Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# function part | |
# img2text | |
def img2text(url): | |
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
text = image_to_text_model(url)[0]["generated_text"] | |
return text | |
# text2story | |
def text2story(text): | |
story_generator = pipeline("text-generation", model="distilgpt2") # Corrected pipeline initialization | |
story_text = story_generator(text, max_length=150, num_return_sequences=1) # Pass parameters here | |
return story_text[0]["generated_text"] # Extract generated text | |
# text2audio | |
def text2audio(story_text): | |
tts_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") # Initialize pipeline | |
audio_data = tts_model(story_text) # Generate audio | |
return audio_data # Return generated audio | |
#main part | |
st.set_page_config(page_title="Your Image to Audio Story", | |
page_icon="π¦") | |
st.header("Turn Your Image to Audio Story") | |
uploaded_file = st.file_uploader("Select an Image...") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", | |
use_column_width=True) | |
#Stage 1: Image to Text | |
st.text('Processing img2text...') | |
scenario = img2text(uploaded_file.name) | |
st.write(scenario) | |
#Stage 2: Text to Story | |
st.text('Generating a story...') | |
story = text2story(scenario) | |
st.write(story) | |
#Stage 3: Story to Audio data | |
st.text('Generating audio data...') | |
audio_data =text2audio(story) |