import streamlit as st from transformers import pipeline # function part # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # text2story def text2story(text): story_generator = pipeline("text-generation", model="distilgpt2") # Corrected pipeline initialization story_text = story_generator(text, max_length=150, num_return_sequences=1) # Pass parameters here return story_text[0]["generated_text"] # Extract generated text # text2audio def text2audio(story_text): tts_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") # Initialize pipeline audio_data = tts_model(story_text) # Generate audio return audio_data # Return generated audio #main part st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) #Stage 1: Image to Text st.text('Processing img2text...') scenario = img2text(uploaded_file.name) st.write(scenario) #Stage 2: Text to Story st.text('Generating a story...') story = text2story(scenario) st.write(story) #Stage 3: Story to Audio data st.text('Generating audio data...') audio_data =text2audio(story)