Spaces:
Sleeping
Sleeping
library_name: diffusers | |
base_model: stabilityai/stable-diffusion-xl-base-1.0 | |
tags: | |
- lora | |
- text-to-image | |
license: openrail++ | |
inference: false | |
# Latent Consistency Model (LCM) LoRA: SDXL | |
Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556) | |
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.* | |
It is a distilled consistency adapter for [`stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) that allows | |
to reduce the number of inference steps to only between **2 - 8 steps**. | |
| Model | Params / M | | |
|----------------------------------------------------------------------------|------------| | |
| [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 | | |
| [lcm-lora-ssd-1b](https://huggingface.co/latent-consistency/lcm-lora-ssd-1b) | 105 | | |
| [**lcm-lora-sdxl**](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | **197M** | | |
## Usage | |
LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first | |
install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`. | |
audio dataset from the Hugging Face Hub: | |
```bash | |
pip install --upgrade pip | |
pip install --upgrade diffusers transformers accelerate peft | |
``` | |
***Note: For detailed usage examples we recommend you to check out our official [LCM-LoRA docs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora)*** | |
### Text-to-Image | |
The adapter can be loaded with it's base model `stabilityai/stable-diffusion-xl-base-1.0`. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps. | |
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0. | |
```python | |
import torch | |
from diffusers import LCMScheduler, AutoPipelineForText2Image | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
adapter_id = "latent-consistency/lcm-lora-sdxl" | |
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.to("cuda") | |
# load and fuse lcm lora | |
pipe.load_lora_weights(adapter_id) | |
pipe.fuse_lora() | |
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k" | |
# disable guidance_scale by passing 0 | |
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0] | |
``` | |
 | |
### Inpainting | |
LCM-LoRA can be used for inpainting as well. | |
```python | |
import torch | |
from diffusers import AutoPipelineForInpainting, LCMScheduler | |
from diffusers.utils import load_image, make_image_grid | |
pipe = AutoPipelineForInpainting.from_pretrained( | |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
).to("cuda") | |
# set scheduler | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# load LCM-LoRA | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
pipe.fuse_lora() | |
# load base and mask image | |
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png").resize((1024, 1024)) | |
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png").resize((1024, 1024)) | |
prompt = "a castle on top of a mountain, highly detailed, 8k" | |
generator = torch.manual_seed(42) | |
image = pipe( | |
prompt=prompt, | |
image=init_image, | |
mask_image=mask_image, | |
generator=generator, | |
num_inference_steps=5, | |
guidance_scale=4, | |
).images[0] | |
make_image_grid([init_image, mask_image, image], rows=1, cols=3) | |
``` | |
 | |
## Combine with styled LoRAs | |
LCM-LoRA can be combined with other LoRAs to generate styled-images in very few steps (4-8). In the following example, we'll use the LCM-LoRA with the [papercut LoRA](TheLastBen/Papercut_SDXL). | |
To learn more about how to combine LoRAs, refer to [this guide](https://huggingface.co/docs/diffusers/tutorials/using_peft_for_inference#combine-multiple-adapters). | |
```python | |
import torch | |
from diffusers import DiffusionPipeline, LCMScheduler | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
variant="fp16", | |
torch_dtype=torch.float16 | |
).to("cuda") | |
# set scheduler | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# load LoRAs | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm") | |
pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut") | |
# Combine LoRAs | |
pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8]) | |
prompt = "papercut, a cute fox" | |
generator = torch.manual_seed(0) | |
image = pipe(prompt, num_inference_steps=4, guidance_scale=1, generator=generator).images[0] | |
image | |
``` | |
 | |
### ControlNet | |
```python | |
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, LCMScheduler | |
from diffusers.utils import load_image | |
image = load_image( | |
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" | |
).resize((1024, 1024)) | |
image = np.array(image) | |
low_threshold = 100 | |
high_threshold = 200 | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0-small", torch_dtype=torch.float16, variant="fp16") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
variant="fp16" | |
).to("cuda") | |
# set scheduler | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# load LCM-LoRA | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
pipe.fuse_lora() | |
generator = torch.manual_seed(0) | |
image = pipe( | |
"picture of the mona lisa", | |
image=canny_image, | |
num_inference_steps=5, | |
guidance_scale=1.5, | |
controlnet_conditioning_scale=0.5, | |
cross_attention_kwargs={"scale": 1}, | |
generator=generator, | |
).images[0] | |
make_image_grid([canny_image, image], rows=1, cols=2) | |
``` | |
 | |
<Tip> | |
The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one. | |
</Tip> | |
### T2I Adapter | |
This example shows how to use the LCM-LoRA with the [Canny T2I-Adapter](TencentARC/t2i-adapter-canny-sdxl-1.0) and SDXL. | |
```python | |
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, LCMScheduler | |
from diffusers.utils import load_image, make_image_grid | |
# Prepare image | |
# Detect the canny map in low resolution to avoid high-frequency details | |
image = load_image( | |
"https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_canny.jpg" | |
).resize((384, 384)) | |
image = np.array(image) | |
low_threshold = 100 | |
high_threshold = 200 | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image).resize((1024, 1024)) | |
# load adapter | |
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda") | |
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
adapter=adapter, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
).to("cuda") | |
# set scheduler | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# load LCM-LoRA | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
prompt = "Mystical fairy in real, magic, 4k picture, high quality" | |
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured" | |
generator = torch.manual_seed(0) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=canny_image, | |
num_inference_steps=4, | |
guidance_scale=1.5, | |
adapter_conditioning_scale=0.8, | |
adapter_conditioning_factor=1, | |
generator=generator, | |
).images[0] | |
make_image_grid([canny_image, image], rows=1, cols=2) | |
``` | |
 | |
## Speed Benchmark | |
TODO | |
## Training | |
TODO | |