Spaces:
Running
on
Zero
Running
on
Zero
ImgRoboAssetGen
/
thirdparty
/TRELLIS
/trellis
/representations
/mesh
/flexicubes
/examples
/util.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import numpy as np | |
import torch | |
import trimesh | |
import kaolin | |
import nvdiffrast.torch as dr | |
############################################################################### | |
# Functions adapted from https://github.com/NVlabs/nvdiffrec | |
############################################################################### | |
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: | |
return torch.sum(x*y, -1, keepdim=True) | |
def length(x: torch.Tensor, eps: float =1e-8) -> torch.Tensor: | |
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN | |
def safe_normalize(x: torch.Tensor, eps: float =1e-8) -> torch.Tensor: | |
return x / length(x, eps) | |
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): | |
y = np.tan(fovy / 2) | |
return torch.tensor([[1/(y*aspect), 0, 0, 0], | |
[ 0, 1/-y, 0, 0], | |
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], | |
[ 0, 0, -1, 0]], dtype=torch.float32, device=device) | |
def translate(x, y, z, device=None): | |
return torch.tensor([[1, 0, 0, x], | |
[0, 1, 0, y], | |
[0, 0, 1, z], | |
[0, 0, 0, 1]], dtype=torch.float32, device=device) | |
def random_rotation_translation(t, device=None): | |
m = np.random.normal(size=[3, 3]) | |
m[1] = np.cross(m[0], m[2]) | |
m[2] = np.cross(m[0], m[1]) | |
m = m / np.linalg.norm(m, axis=1, keepdims=True) | |
m = np.pad(m, [[0, 1], [0, 1]], mode='constant') | |
m[3, 3] = 1.0 | |
m[:3, 3] = np.random.uniform(-t, t, size=[3]) | |
return torch.tensor(m, dtype=torch.float32, device=device) | |
def rotate_x(a, device=None): | |
s, c = np.sin(a), np.cos(a) | |
return torch.tensor([[1, 0, 0, 0], | |
[0, c, s, 0], | |
[0, -s, c, 0], | |
[0, 0, 0, 1]], dtype=torch.float32, device=device) | |
def rotate_y(a, device=None): | |
s, c = np.sin(a), np.cos(a) | |
return torch.tensor([[ c, 0, s, 0], | |
[ 0, 1, 0, 0], | |
[-s, 0, c, 0], | |
[ 0, 0, 0, 1]], dtype=torch.float32, device=device) | |
class Mesh: | |
def __init__(self, vertices, faces): | |
self.vertices = vertices | |
self.faces = faces | |
def auto_normals(self): | |
v0 = self.vertices[self.faces[:, 0], :] | |
v1 = self.vertices[self.faces[:, 1], :] | |
v2 = self.vertices[self.faces[:, 2], :] | |
nrm = safe_normalize(torch.cross(v1 - v0, v2 - v0)) | |
self.nrm = nrm | |
def load_mesh(path, device): | |
mesh_np = trimesh.load(path) | |
vertices = torch.tensor(mesh_np.vertices, device=device, dtype=torch.float) | |
faces = torch.tensor(mesh_np.faces, device=device, dtype=torch.long) | |
# Normalize | |
vmin, vmax = vertices.min(dim=0)[0], vertices.max(dim=0)[0] | |
scale = 1.8 / torch.max(vmax - vmin).item() | |
vertices = vertices - (vmax + vmin) / 2 # Center mesh on origin | |
vertices = vertices * scale # Rescale to [-0.9, 0.9] | |
return Mesh(vertices, faces) | |
def compute_sdf(points, vertices, faces): | |
face_vertices = kaolin.ops.mesh.index_vertices_by_faces(vertices.clone().unsqueeze(0), faces) | |
distance = kaolin.metrics.trianglemesh.point_to_mesh_distance(points.unsqueeze(0), face_vertices)[0] | |
with torch.no_grad(): | |
sign = (kaolin.ops.mesh.check_sign(vertices.unsqueeze(0), faces, points.unsqueeze(0))<1).float() * 2 - 1 | |
sdf = (sign*distance).squeeze(0) | |
return sdf | |
def sample_random_points(n, mesh): | |
pts_random = (torch.rand((n//2,3),device='cuda') - 0.5) * 2 | |
pts_surface = kaolin.ops.mesh.sample_points(mesh.vertices.unsqueeze(0), mesh.faces, 500)[0].squeeze(0) | |
pts_surface += torch.randn_like(pts_surface) * 0.05 | |
pts = torch.cat([pts_random, pts_surface]) | |
return pts | |
def xfm_points(points, matrix): | |
'''Transform points. | |
Args: | |
points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] | |
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] | |
use_python: Use PyTorch's torch.matmul (for validation) | |
Returns: | |
Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. | |
''' | |
out = torch.matmul( | |
torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2)) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN" | |
return out | |
def interpolate(attr, rast, attr_idx, rast_db=None): | |
return dr.interpolate( | |
attr, rast, attr_idx, rast_db=rast_db, | |
diff_attrs=None if rast_db is None else 'all') |