xinjie.wang
update
55ed985
import logging
import os
import random
from typing import List, Tuple
import fire
import numpy as np
import torch
from diffusers.utils import make_image_grid
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import (
StableDiffusionXLControlNetImg2ImgPipeline,
)
from PIL import Image, ImageEnhance, ImageFilter
from torchvision import transforms
from asset3d_gen.data.datasets import Asset3dGenDataset
from asset3d_gen.models.texture_model import build_texture_gen_pipe
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_init_noise_image(image: Image.Image) -> Image.Image:
blurred_image = image.convert("L").filter(
ImageFilter.GaussianBlur(radius=3)
)
enhancer = ImageEnhance.Contrast(blurred_image)
image_decreased_contrast = enhancer.enhance(factor=0.5)
return image_decreased_contrast
def infer_pipe(
index_file: str,
controlnet_ckpt: str = None,
uid: str = None,
prompt: str = None,
controlnet_cond_scale: float = 0.4,
control_guidance_end: float = 0.9,
strength: float = 1.0,
num_inference_steps: int = 50,
guidance_scale: float = 10,
ip_adapt_scale: float = 0,
ip_img_path: str = None,
sub_idxs: List[List[int]] = None,
num_images_per_prompt: int = 3, # increase if want similar images.
device: str = "cuda",
save_dir: str = "infer_vis",
seed: int = None,
target_hw: tuple[int, int] = (512, 512),
pipeline: StableDiffusionXLControlNetImg2ImgPipeline = None,
) -> str:
# sub_idxs = [[0, 1, 2], [3, 4, 5]] # None for single image.
if sub_idxs is None:
sub_idxs = [[random.randint(0, 5)]] # 6 views.
target_hw = [2 * size for size in target_hw]
transform_list = [
transforms.Resize(
target_hw, interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.CenterCrop(target_hw),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
image_transform = transforms.Compose(transform_list)
control_transform = transforms.Compose(transform_list[:-1])
grid_hw = (target_hw[0] * len(sub_idxs), target_hw[1] * len(sub_idxs[0]))
dataset = Asset3dGenDataset(
index_file, target_hw=grid_hw, sub_idxs=sub_idxs
)
if uid is None:
uid = random.choice(list(dataset.meta_info.keys()))
if prompt is None:
prompt = dataset.meta_info[uid]["capture"]
if isinstance(prompt, List) or isinstance(prompt, Tuple):
prompt = ", ".join(map(str, prompt))
# prompt += "high quality, ultra-clear, high resolution, best quality, 4k"
# prompt += "高品质,清晰,细节"
prompt += ", high quality, high resolution, best quality"
# prompt += ", with diffuse lighting, showing no reflections."
logger.info(f"Inference with prompt: {prompt}")
negative_prompt = (
"nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯,高光,镜面反射"
)
control_image = dataset.fetch_sample_grid_images(
uid,
attrs=["image_view_normal", "image_position", "image_mask"],
sub_idxs=sub_idxs,
transform=control_transform,
)
color_image = dataset.fetch_sample_grid_images(
uid,
attrs=["image_color"],
sub_idxs=sub_idxs,
transform=image_transform,
)
normal_pil, position_pil, mask_pil, color_pil = dataset.visualize_item(
control_image,
color_image,
save_dir=save_dir,
)
if pipeline is None:
pipeline = build_texture_gen_pipe(
base_ckpt_dir="./weights",
controlnet_ckpt=controlnet_ckpt,
ip_adapt_scale=ip_adapt_scale,
device=device,
)
if ip_adapt_scale > 0 and ip_img_path is not None and len(ip_img_path) > 0:
ip_image = Image.open(ip_img_path).convert("RGB")
ip_image = ip_image.resize(target_hw[::-1])
ip_image = [ip_image]
pipeline.set_ip_adapter_scale([ip_adapt_scale])
else:
ip_image = None
generator = None
if seed is not None:
generator = torch.Generator(device).manual_seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
init_image = get_init_noise_image(normal_pil)
# init_image = get_init_noise_image(color_pil)
images = []
row_num, col_num = 2, 3
img_save_paths = []
while len(images) < col_num:
image = pipeline(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_cond_scale,
control_guidance_end=control_guidance_end,
strength=strength,
control_image=control_image[None, ...],
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
ip_adapter_image=ip_image,
generator=generator,
).images
images.extend(image)
grid_image = [normal_pil, position_pil, color_pil] + images[:col_num]
# save_dir = os.path.join(save_dir, uid)
os.makedirs(save_dir, exist_ok=True)
for idx in range(col_num):
rgba_image = Image.merge("RGBA", (*images[idx].split(), mask_pil))
img_save_path = os.path.join(save_dir, f"color_sample{idx}.png")
rgba_image.save(img_save_path)
img_save_paths.append(img_save_path)
sub_idxs = "_".join(
[str(item) for sublist in sub_idxs for item in sublist]
)
save_path = os.path.join(
save_dir, f"sample_idx{str(sub_idxs)}_ip{ip_adapt_scale}.jpg"
)
make_image_grid(grid_image, row_num, col_num).save(save_path)
logger.info(f"Visualize in {save_path}")
return img_save_paths
def entrypoint() -> None:
fire.Fire(infer_pipe)
if __name__ == "__main__":
entrypoint()