File size: 5,928 Bytes
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import logging
import os
import random
from typing import List, Tuple

import fire
import numpy as np
import torch
from diffusers.utils import make_image_grid
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import (
    StableDiffusionXLControlNetImg2ImgPipeline,
)
from PIL import Image, ImageEnhance, ImageFilter
from torchvision import transforms
from asset3d_gen.data.datasets import Asset3dGenDataset
from asset3d_gen.models.texture_model import build_texture_gen_pipe

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def get_init_noise_image(image: Image.Image) -> Image.Image:
    blurred_image = image.convert("L").filter(
        ImageFilter.GaussianBlur(radius=3)
    )

    enhancer = ImageEnhance.Contrast(blurred_image)
    image_decreased_contrast = enhancer.enhance(factor=0.5)

    return image_decreased_contrast


def infer_pipe(
    index_file: str,
    controlnet_ckpt: str = None,
    uid: str = None,
    prompt: str = None,
    controlnet_cond_scale: float = 0.4,
    control_guidance_end: float = 0.9,
    strength: float = 1.0,
    num_inference_steps: int = 50,
    guidance_scale: float = 10,
    ip_adapt_scale: float = 0,
    ip_img_path: str = None,
    sub_idxs: List[List[int]] = None,
    num_images_per_prompt: int = 3,  # increase if want similar images.
    device: str = "cuda",
    save_dir: str = "infer_vis",
    seed: int = None,
    target_hw: tuple[int, int] = (512, 512),
    pipeline: StableDiffusionXLControlNetImg2ImgPipeline = None,
) -> str:
    # sub_idxs = [[0, 1, 2], [3, 4, 5]] # None for single image.
    if sub_idxs is None:
        sub_idxs = [[random.randint(0, 5)]]  # 6 views.
        target_hw = [2 * size for size in target_hw]

    transform_list = [
        transforms.Resize(
            target_hw, interpolation=transforms.InterpolationMode.BILINEAR
        ),
        transforms.CenterCrop(target_hw),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]
    image_transform = transforms.Compose(transform_list)
    control_transform = transforms.Compose(transform_list[:-1])

    grid_hw = (target_hw[0] * len(sub_idxs), target_hw[1] * len(sub_idxs[0]))
    dataset = Asset3dGenDataset(
        index_file, target_hw=grid_hw, sub_idxs=sub_idxs
    )

    if uid is None:
        uid = random.choice(list(dataset.meta_info.keys()))
    if prompt is None:
        prompt = dataset.meta_info[uid]["capture"]
    if isinstance(prompt, List) or isinstance(prompt, Tuple):
        prompt = ", ".join(map(str, prompt))
    # prompt += "high quality, ultra-clear, high resolution, best quality, 4k"
    # prompt += "高品质,清晰,细节"
    prompt += ", high quality, high resolution, best quality"
    # prompt += ", with diffuse lighting, showing no reflections."
    logger.info(f"Inference with prompt: {prompt}")

    negative_prompt = (
        "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯,高光,镜面反射"
    )

    control_image = dataset.fetch_sample_grid_images(
        uid,
        attrs=["image_view_normal", "image_position", "image_mask"],
        sub_idxs=sub_idxs,
        transform=control_transform,
    )

    color_image = dataset.fetch_sample_grid_images(
        uid,
        attrs=["image_color"],
        sub_idxs=sub_idxs,
        transform=image_transform,
    )

    normal_pil, position_pil, mask_pil, color_pil = dataset.visualize_item(
        control_image,
        color_image,
        save_dir=save_dir,
    )

    if pipeline is None:
        pipeline = build_texture_gen_pipe(
            base_ckpt_dir="./weights",
            controlnet_ckpt=controlnet_ckpt,
            ip_adapt_scale=ip_adapt_scale,
            device=device,
        )

    if ip_adapt_scale > 0 and ip_img_path is not None and len(ip_img_path) > 0:
        ip_image = Image.open(ip_img_path).convert("RGB")
        ip_image = ip_image.resize(target_hw[::-1])
        ip_image = [ip_image]
        pipeline.set_ip_adapter_scale([ip_adapt_scale])
    else:
        ip_image = None

    generator = None
    if seed is not None:
        generator = torch.Generator(device).manual_seed(seed)
        torch.manual_seed(seed)
        np.random.seed(seed)
        random.seed(seed)

    init_image = get_init_noise_image(normal_pil)
    # init_image = get_init_noise_image(color_pil)

    images = []
    row_num, col_num = 2, 3
    img_save_paths = []
    while len(images) < col_num:
        image = pipeline(
            prompt=prompt,
            image=init_image,
            controlnet_conditioning_scale=controlnet_cond_scale,
            control_guidance_end=control_guidance_end,
            strength=strength,
            control_image=control_image[None, ...],
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            ip_adapter_image=ip_image,
            generator=generator,
        ).images
        images.extend(image)

    grid_image = [normal_pil, position_pil, color_pil] + images[:col_num]
    # save_dir = os.path.join(save_dir, uid)
    os.makedirs(save_dir, exist_ok=True)

    for idx in range(col_num):
        rgba_image = Image.merge("RGBA", (*images[idx].split(), mask_pil))
        img_save_path = os.path.join(save_dir, f"color_sample{idx}.png")
        rgba_image.save(img_save_path)
        img_save_paths.append(img_save_path)

    sub_idxs = "_".join(
        [str(item) for sublist in sub_idxs for item in sublist]
    )
    save_path = os.path.join(
        save_dir, f"sample_idx{str(sub_idxs)}_ip{ip_adapt_scale}.jpg"
    )
    make_image_grid(grid_image, row_num, col_num).save(save_path)
    logger.info(f"Visualize in {save_path}")

    return img_save_paths


def entrypoint() -> None:
    fire.Fire(infer_pipe)


if __name__ == "__main__":
    entrypoint()