ImgRoboAssetGen / app.py
xinjie.wang
update
dbaf384
raw
history blame
1.88 kB
import os
import shutil
import spaces
import gradio as gr
from gradio_litmodel3d import LitModel3D
# TMP_DIR = os.path.join(
# os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d"
# )
# os.makedirs(TMP_DIR, exist_ok=True)
# RBG_REMOVER = RembgRemover()
# SAM_PREDICTOR = SAMPredictor(model_type="vit_h")
# DELIGHT = DelightingModel()
# IMAGESR_MODEL = ImageRealESRGAN(outscale=4)
# PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
# "JeffreyXiang/TRELLIS-image-large"
# )
# # PIPELINE.cuda()
# IMAGE_BUFFER = {}
# SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
# GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
# AESTHETIC_CHECKER = ImageAestheticChecker()
# CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER]
# URDF_CONVERTOR = URDFGenerator(GPT_CLIENT, render_view_num=4)
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' πŸ€—
return f"Hello {zero + n} Tensor"
with gr.Blocks(
) as demo:
with gr.Column():
# video_output = gr.Video(
# label="Generated 3D Asset",
# autoplay=True,
# loop=True,
# height=300,
# interactive=False
# )
# model_output_gs = gr.Model3D(
# label="Gaussian Representation", height=300, interactive=False
# )
# aligned_gs = gr.Textbox(visible=False)
# model_output_mesh = LitModel3D(
# # label="Mesh Representation",
# # height=300,
# # exposure=10,
# # interactive=False
# )
# model_output_mesh = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
gr.Model3D(
clear_color=[0.9, 0.9, 0.9, 1.0],
)
# gr.Markdown(
# """ The rendering of `Gaussian Representation` takes additional 10s. """ # noqa
# )
if __name__ == "__main__":
demo.launch()