Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import spaces | |
import gradio as gr | |
from gradio_litmodel3d import LitModel3D | |
# TMP_DIR = os.path.join( | |
# os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d" | |
# ) | |
# os.makedirs(TMP_DIR, exist_ok=True) | |
# RBG_REMOVER = RembgRemover() | |
# SAM_PREDICTOR = SAMPredictor(model_type="vit_h") | |
# DELIGHT = DelightingModel() | |
# IMAGESR_MODEL = ImageRealESRGAN(outscale=4) | |
# PIPELINE = TrellisImageTo3DPipeline.from_pretrained( | |
# "JeffreyXiang/TRELLIS-image-large" | |
# ) | |
# # PIPELINE.cuda() | |
# IMAGE_BUFFER = {} | |
# SEG_CHECKER = ImageSegChecker(GPT_CLIENT) | |
# GEO_CHECKER = MeshGeoChecker(GPT_CLIENT) | |
# AESTHETIC_CHECKER = ImageAestheticChecker() | |
# CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER] | |
# URDF_CONVERTOR = URDFGenerator(GPT_CLIENT, render_view_num=4) | |
def greet(n): | |
print(zero.device) # <-- 'cuda:0' π€ | |
return f"Hello {zero + n} Tensor" | |
with gr.Blocks( | |
) as demo: | |
with gr.Column(): | |
# video_output = gr.Video( | |
# label="Generated 3D Asset", | |
# autoplay=True, | |
# loop=True, | |
# height=300, | |
# interactive=False | |
# ) | |
# model_output_gs = gr.Model3D( | |
# label="Gaussian Representation", height=300, interactive=False | |
# ) | |
# aligned_gs = gr.Textbox(visible=False) | |
# model_output_mesh = LitModel3D( | |
# # label="Mesh Representation", | |
# # height=300, | |
# # exposure=10, | |
# # interactive=False | |
# ) | |
# model_output_mesh = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
gr.Model3D( | |
clear_color=[0.9, 0.9, 0.9, 1.0], | |
) | |
# gr.Markdown( | |
# """ The rendering of `Gaussian Representation` takes additional 10s. """ # noqa | |
# ) | |
if __name__ == "__main__": | |
demo.launch() | |