import os import shutil import spaces import gradio as gr from gradio_litmodel3d import LitModel3D # TMP_DIR = os.path.join( # os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d" # ) # os.makedirs(TMP_DIR, exist_ok=True) # RBG_REMOVER = RembgRemover() # SAM_PREDICTOR = SAMPredictor(model_type="vit_h") # DELIGHT = DelightingModel() # IMAGESR_MODEL = ImageRealESRGAN(outscale=4) # PIPELINE = TrellisImageTo3DPipeline.from_pretrained( # "JeffreyXiang/TRELLIS-image-large" # ) # # PIPELINE.cuda() # IMAGE_BUFFER = {} # SEG_CHECKER = ImageSegChecker(GPT_CLIENT) # GEO_CHECKER = MeshGeoChecker(GPT_CLIENT) # AESTHETIC_CHECKER = ImageAestheticChecker() # CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER] # URDF_CONVERTOR = URDFGenerator(GPT_CLIENT, render_view_num=4) @spaces.GPU def greet(n): print(zero.device) # <-- 'cuda:0' 🤗 return f"Hello {zero + n} Tensor" with gr.Blocks( ) as demo: with gr.Column(): # video_output = gr.Video( # label="Generated 3D Asset", # autoplay=True, # loop=True, # height=300, # interactive=False # ) # model_output_gs = gr.Model3D( # label="Gaussian Representation", height=300, interactive=False # ) # aligned_gs = gr.Textbox(visible=False) # model_output_mesh = LitModel3D( # # label="Mesh Representation", # # height=300, # # exposure=10, # # interactive=False # ) # model_output_mesh = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) gr.Model3D( clear_color=[0.9, 0.9, 0.9, 1.0], ) # gr.Markdown( # """ The rendering of `Gaussian Representation` takes additional 10s. """ # noqa # ) if __name__ == "__main__": demo.launch()