File size: 8,409 Bytes
9b53de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import argparse
import numpy as np
import torch
import nvdiffrast.torch as dr
import trimesh
import os
from util import *
import render
import loss
import imageio

import sys
sys.path.append('..')
from flexicubes import FlexiCubes

###############################################################################
# Functions adapted from https://github.com/NVlabs/nvdiffrec
###############################################################################

def lr_schedule(iter):
    return max(0.0, 10**(-(iter)*0.0002)) # Exponential falloff from [1.0, 0.1] over 5k epochs.    

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='flexicubes optimization')
    parser.add_argument('-o', '--out_dir', type=str, default=None)
    parser.add_argument('-rm', '--ref_mesh', type=str)    
    
    parser.add_argument('-i', '--iter', type=int, default=1000)
    parser.add_argument('-b', '--batch', type=int, default=8)
    parser.add_argument('-r', '--train_res', nargs=2, type=int, default=[2048, 2048])
    parser.add_argument('-lr', '--learning_rate', type=float, default=0.01)
    parser.add_argument('--voxel_grid_res', type=int, default=64)
    
    parser.add_argument('--sdf_loss', type=bool, default=True)
    parser.add_argument('--develop_reg', type=bool, default=False)
    parser.add_argument('--sdf_regularizer', type=float, default=0.2)
    
    parser.add_argument('-dr', '--display_res', nargs=2, type=int, default=[512, 512])
    parser.add_argument('-si', '--save_interval', type=int, default=20)
    FLAGS = parser.parse_args()
    device = 'cuda'
    
    os.makedirs(FLAGS.out_dir, exist_ok=True)
    glctx = dr.RasterizeGLContext()
    
    # Load GT mesh
    gt_mesh = load_mesh(FLAGS.ref_mesh, device)
    gt_mesh.auto_normals() # compute face normals for visualization
    
    # ==============================================================================================
    #  Create and initialize FlexiCubes
    # ==============================================================================================
    fc = FlexiCubes(device)
    x_nx3, cube_fx8 = fc.construct_voxel_grid(FLAGS.voxel_grid_res)
    x_nx3 *= 2 # scale up the grid so that it's larger than the target object
    
    sdf = torch.rand_like(x_nx3[:,0]) - 0.1 # randomly init SDF
    sdf    = torch.nn.Parameter(sdf.clone().detach(), requires_grad=True)
    # set per-cube learnable weights to zeros
    weight = torch.zeros((cube_fx8.shape[0], 21), dtype=torch.float, device='cuda') 
    weight    = torch.nn.Parameter(weight.clone().detach(), requires_grad=True)
    deform = torch.nn.Parameter(torch.zeros_like(x_nx3), requires_grad=True)
    
    #  Retrieve all the edges of the voxel grid; these edges will be utilized to 
    #  compute the regularization loss in subsequent steps of the process.    
    all_edges = cube_fx8[:, fc.cube_edges].reshape(-1, 2)
    grid_edges = torch.unique(all_edges, dim=0)
    
    # ==============================================================================================
    #  Setup optimizer
    # ==============================================================================================
    optimizer = torch.optim.Adam([sdf, weight,deform], lr=FLAGS.learning_rate)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: lr_schedule(x)) 
    
    # ==============================================================================================
    #  Train loop
    # ==============================================================================================   
    for it in range(FLAGS.iter): 
        optimizer.zero_grad()
        # sample random camera poses
        mv, mvp = render.get_random_camera_batch(FLAGS.batch, iter_res=FLAGS.train_res, device=device, use_kaolin=False)
        # render gt mesh
        target = render.render_mesh_paper(gt_mesh, mv, mvp, FLAGS.train_res)
        # extract and render FlexiCubes mesh
        grid_verts = x_nx3 + (2-1e-8) / (FLAGS.voxel_grid_res * 2) * torch.tanh(deform)
        vertices, faces, L_dev = fc(grid_verts, sdf, cube_fx8, FLAGS.voxel_grid_res, beta_fx12=weight[:,:12], alpha_fx8=weight[:,12:20],
            gamma_f=weight[:,20], training=True)
        flexicubes_mesh = Mesh(vertices, faces)
        buffers = render.render_mesh_paper(flexicubes_mesh, mv, mvp, FLAGS.train_res)
        
        # evaluate reconstruction loss
        mask_loss = (buffers['mask'] - target['mask']).abs().mean()
        depth_loss = (((((buffers['depth'] - (target['depth']))* target['mask'])**2).sum(-1)+1e-8)).sqrt().mean() * 10
    
        t_iter = it / FLAGS.iter
        sdf_weight = FLAGS.sdf_regularizer - (FLAGS.sdf_regularizer - FLAGS.sdf_regularizer/20)*min(1.0, 4.0 * t_iter)
        reg_loss = loss.sdf_reg_loss(sdf, grid_edges).mean() * sdf_weight # Loss to eliminate internal floaters that are not visible
        reg_loss += L_dev.mean() * 0.5
        reg_loss += (weight[:,:20]).abs().mean() * 0.1
        total_loss = mask_loss + depth_loss + reg_loss
        
        if FLAGS.sdf_loss: # optionally add SDF loss to eliminate internal structures
            with torch.no_grad():
                pts = sample_random_points(1000, gt_mesh)
                gt_sdf = compute_sdf(pts, gt_mesh.vertices, gt_mesh.faces)
            pred_sdf = compute_sdf(pts, flexicubes_mesh.vertices, flexicubes_mesh.faces)
            total_loss += torch.nn.functional.mse_loss(pred_sdf, gt_sdf) * 2e3
        
        # optionally add developability regularizer, as described in paper section 5.2
        if FLAGS.develop_reg:
            reg_weight = max(0, t_iter - 0.8) * 5
            if reg_weight > 0: # only applied after shape converges
                reg_loss = loss.mesh_developable_reg(flexicubes_mesh).mean() * 10
                reg_loss += (deform).abs().mean()
                reg_loss += (weight[:,:20]).abs().mean()
                total_loss = mask_loss + depth_loss + reg_loss 
        
        total_loss.backward()
        optimizer.step()
        scheduler.step()        
        
        if (it % FLAGS.save_interval == 0 or it == (FLAGS.iter-1)): # save normal image for visualization
            with torch.no_grad():
                # extract mesh with training=False
                vertices, faces, L_dev = fc(grid_verts, sdf, cube_fx8, FLAGS.voxel_grid_res, beta_fx12=weight[:,:12], alpha_fx8=weight[:,12:20],
                gamma_f=weight[:,20], training=False)
                flexicubes_mesh = Mesh(vertices, faces)
                
                flexicubes_mesh.auto_normals() # compute face normals for visualization
                mv, mvp = render.get_rotate_camera(it//FLAGS.save_interval, iter_res=FLAGS.display_res, device=device,use_kaolin=False)
                val_buffers = render.render_mesh_paper(flexicubes_mesh, mv.unsqueeze(0), mvp.unsqueeze(0), FLAGS.display_res, return_types=["normal"], white_bg=True)
                val_image = ((val_buffers["normal"][0].detach().cpu().numpy()+1)/2*255).astype(np.uint8)
                
                gt_buffers = render.render_mesh_paper(gt_mesh, mv.unsqueeze(0), mvp.unsqueeze(0), FLAGS.display_res, return_types=["normal"], white_bg=True)
                gt_image = ((gt_buffers["normal"][0].detach().cpu().numpy()+1)/2*255).astype(np.uint8)
                imageio.imwrite(os.path.join(FLAGS.out_dir, '{:04d}.png'.format(it)), np.concatenate([val_image, gt_image], 1))
                print(f"Optimization Step [{it}/{FLAGS.iter}], Loss: {total_loss.item():.4f}")
            
    # ==============================================================================================
    #  Save ouput
    # ==============================================================================================     
    mesh_np = trimesh.Trimesh(vertices = vertices.detach().cpu().numpy(), faces=faces.detach().cpu().numpy(), process=False)
    mesh_np.export(os.path.join(FLAGS.out_dir, 'output_mesh.obj'))