Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download | |
from distillanydepth.modeling.backbones.vit.ViT_DINO import vit_large, vit_giant2, vit_base | |
from distillanydepth.modeling.backbones.vit.ViT_DINO_reg import vit_large_reg, vit_giant2_reg | |
from timm.models.vision_transformer import vit_large_patch16_224, vit_large_patch14_224 | |
def compute_depth_expectation(prob, depth_values): | |
depth_values = depth_values.view(*depth_values.shape, 1, 1) | |
depth = torch.sum(prob * depth_values, 1) | |
return depth | |
def _make_scratch(in_shape, out_shape, groups=1, expand=False): | |
scratch = nn.Module() | |
out_shape1 = out_shape | |
out_shape2 = out_shape | |
out_shape3 = out_shape | |
if len(in_shape) >= 4: | |
out_shape4 = out_shape | |
if expand: | |
out_shape1 = out_shape | |
out_shape2 = out_shape*2 | |
out_shape3 = out_shape*4 | |
if len(in_shape) >= 4: | |
out_shape4 = out_shape*8 | |
scratch.layer1_rn = nn.Conv2d( | |
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer2_rn = nn.Conv2d( | |
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer3_rn = nn.Conv2d( | |
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
if len(in_shape) >= 4: | |
scratch.layer4_rn = nn.Conv2d( | |
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
return scratch | |
def _make_fusion_block(features, use_bn, size = None): | |
return FeatureFusionBlock( | |
features, | |
nn.ReLU(False), | |
deconv=False, | |
bn=use_bn, | |
expand=False, | |
align_corners=True, | |
size=size, | |
) | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module. | |
""" | |
def __init__(self, features, activation, bn): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.bn = bn | |
self.groups=1 | |
self.conv1 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups | |
) | |
self.conv2 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups | |
) | |
if self.bn==True: | |
self.bn1 = nn.BatchNorm2d(features) | |
self.bn2 = nn.BatchNorm2d(features) | |
self.activation = activation | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.activation(x) | |
out = self.conv1(out) | |
if self.bn==True: | |
out = self.bn1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
if self.bn==True: | |
out = self.bn2(out) | |
if self.groups > 1: | |
out = self.conv_merge(out) | |
return self.skip_add.add(out, x) | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block. | |
""" | |
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock, self).__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.groups=1 | |
self.expand = expand | |
out_features = features | |
if self.expand==True: | |
out_features = features//2 | |
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) | |
self.resConfUnit1 = ResidualConvUnit(features, activation, bn) | |
self.resConfUnit2 = ResidualConvUnit(features, activation, bn) | |
self.skip_add = nn.quantized.FloatFunctional() | |
self.size=size | |
def forward(self, *xs, size=None): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
res = self.resConfUnit1(xs[1]) | |
output = self.skip_add.add(output, res) | |
output = self.resConfUnit2(output) | |
if (size is None) and (self.size is None): | |
modifier = {"scale_factor": 2} | |
elif size is None: | |
modifier = {"size": self.size} | |
else: | |
modifier = {"size": size} | |
output = nn.functional.interpolate( | |
output, **modifier, mode="bilinear", align_corners=self.align_corners | |
) | |
output = self.out_conv(output) | |
return output | |
class DPTHead(nn.Module): | |
def __init__( | |
self, | |
mode, | |
in_channels, | |
features=256, | |
use_bn=False, | |
out_channels=[256, 512, 1024, 1024], | |
head_out_channels=1, | |
use_clstoken=False, | |
num_depth_regressor_anchor=512, | |
): | |
super(DPTHead, self).__init__() | |
self.use_clstoken = use_clstoken | |
self.projects = nn.ModuleList([ | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channel, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) for out_channel in out_channels | |
]) | |
self.resize_layers = nn.ModuleList([ | |
nn.ConvTranspose2d( | |
in_channels=out_channels[0], | |
out_channels=out_channels[0], | |
kernel_size=4, | |
stride=4, | |
padding=0), | |
nn.ConvTranspose2d( | |
in_channels=out_channels[1], | |
out_channels=out_channels[1], | |
kernel_size=2, | |
stride=2, | |
padding=0), | |
nn.Identity(), | |
nn.Conv2d( | |
in_channels=out_channels[3], | |
out_channels=out_channels[3], | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
]) | |
if use_clstoken: | |
self.readout_projects = nn.ModuleList() | |
for _ in range(len(self.projects)): | |
self.readout_projects.append( | |
nn.Sequential( | |
nn.Linear(2 * in_channels, in_channels), | |
nn.GELU())) | |
self.scratch = _make_scratch( | |
out_channels, | |
features, | |
groups=1, | |
expand=False, | |
) | |
self.scratch.stem_transpose = None | |
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) | |
head_features_1 = features | |
# if nclass > 1: | |
# self.scratch.output_conv = nn.Sequential( | |
# nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1), | |
# nn.ReLU(True), | |
# nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0), | |
# ) | |
# else: | |
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) | |
# if 'metric' in mode: | |
# num_depth_regressor_anchor = 512 | |
# # head_features_2 = num_depth_regressor_anchor | |
# self.scratch.output_conv2 = nn.Sequential( | |
# nn.Conv2d(head_features_1 // 2, num_depth_regressor_anchor, kernel_size=3, stride=1, padding=1), | |
# nn.ReLU(True), | |
# nn.Conv2d(num_depth_regressor_anchor, num_depth_regressor_anchor, kernel_size=1, stride=1, padding=0), | |
# # nn.Sigmoid() | |
# ) | |
# elif 'disparity' in mode or 'rel_depth' in mode: | |
# head_features_2 = 32 | |
# self.scratch.output_conv2 = nn.Sequential( | |
# nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), | |
# nn.ReLU(True), | |
# nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), | |
# nn.ReLU(True), | |
# nn.Identity(), | |
# ) | |
# else: | |
# raise NotImplementedError | |
head_features_2 = 32 | |
self.scratch.output_conv2 = nn.Sequential( | |
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(head_features_2, head_out_channels, kernel_size=1, stride=1, padding=0), | |
# nn.ReLU(True), | |
# nn.Identity(), | |
) | |
def forward(self, out_features, patch_h, patch_w): | |
out = [] | |
for i, x in enumerate(out_features): | |
if self.use_clstoken: | |
x, cls_token = x[0], x[1] | |
readout = cls_token.unsqueeze(1).expand_as(x) | |
x = self.readout_projects[i](torch.cat((x, readout), -1)) | |
else: | |
x = x[0] | |
# import pdb;pdb.set_trace() | |
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) | |
x = self.projects[i](x) | |
x = self.resize_layers[i](x) | |
out.append(x) | |
layer_1, layer_2, layer_3, layer_4 = out | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) | |
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) | |
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
out = self.scratch.output_conv1(path_1) | |
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) | |
out = self.scratch.output_conv2(out) | |
# print(out.min()) | |
# import pdb;pdb.set_trace() | |
return out | |
class DepthAnything(nn.Module, PyTorchModelHubMixin): | |
# @register_to_config | |
def __init__( | |
self, | |
encoder='vitl', | |
features=256, | |
out_channels=[256, 512, 1024, 1024], | |
head_out_channels=1, | |
wo_relu_1_2_channel=False, | |
use_bn=False, | |
use_clstoken=False, | |
# localhub=None | |
use_registers=False, | |
max_depth=1.0, | |
mode='disparity', | |
num_depth_regressor_anchor=512, | |
depth_normalize=(0.1, 150), | |
pretrain_type='dinov2', # sam, imagenet | |
del_mask_token=True, | |
): | |
super(DepthAnything, self).__init__() | |
self.pretrain_type = pretrain_type | |
self.max_depth = max_depth | |
self.mode = mode | |
assert encoder in ['vits', 'vitb', 'vitl', "vitg"] | |
self.intermediate_layer_idx = { | |
'vits': [2, 5, 8, 11], | |
'vitb': [2, 5, 8, 11], | |
'vitl': [4, 11, 17, 23], | |
'vitg': [9, 19, 29, 39] | |
} | |
self.backbone_name = encoder | |
# in case the Internet connection is not stable, please load the DINOv2 locally | |
# if localhub: | |
# assert type(localhub) == str | |
# # self.backbone = torch.hub.load(localhub, 'dinov2_{:}14'.format(encoder), source='local', pretrained=False) | |
# self.backbone = torch.hub.load(localhub, 'dinov2_{:}14'.format(encoder), source='local', pretrained=True) | |
# else: | |
# self.backbone = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder)) | |
if use_registers: | |
if encoder == 'vitl': | |
checkpoint='data/weights/dinov2/dinov2_vitl14_reg4_pretrain.pth' | |
self.backbone = vit_large_reg(checkpoint=checkpoint) | |
elif encoder == 'vitg': | |
checkpoint='data/weights/dinov2/dinov2_vitg14_reg4_pretrain.pth' | |
self.backbone = vit_giant2_reg(checkpoint=checkpoint) | |
else: | |
raise NotImplementedError | |
else: | |
if encoder == 'vitl': | |
if pretrain_type == 'dinov2': | |
self.backbone = vit_large(checkpoint=None, del_mask_token=del_mask_token) | |
# import pdb;pdb.set_trace() | |
elif encoder == 'vitb': | |
self.backbone = vit_base(checkpoint=None, del_mask_token=del_mask_token) | |
elif encoder == 'vitg': | |
from geobench.depthanything_v2.dinov2 import DINOv2 | |
checkpoint='data/weights/dinov2/dinov2_vitg14_pretrain.pth' | |
self.backbone = DINOv2(model_name=encoder) | |
miss, unexpected = self.backbone.load_state_dict(torch.load(checkpoint, map_location='cpu'), strict=False) | |
print('missing keys:', miss) | |
print('unexpected keys:', unexpected) | |
# import pdb;pdb.set_trace() | |
# self.backbone = vit_giant2(checkpoint=checkpoint) | |
else: | |
raise NotImplementedError | |
# dim = self.backbone.blocks[0].attn.qkv.in_features | |
dim = self.backbone.embed_dim | |
self.min_depth = depth_normalize[0] | |
self.max_depth = depth_normalize[1] | |
self.num_depth_regressor_anchor = num_depth_regressor_anchor | |
self.depth_head = DPTHead(mode, dim, features, use_bn, | |
out_channels=out_channels, | |
head_out_channels=head_out_channels, | |
use_clstoken=use_clstoken, | |
num_depth_regressor_anchor=num_depth_regressor_anchor, | |
) | |
# import pdb;pdb.set_trace() | |
self.wo_relu_1_2_channel = wo_relu_1_2_channel | |
def get_bins(self, bins_num): | |
depth_bins_vec = torch.linspace(math.log(self.min_depth), math.log(self.max_depth), bins_num, device='cuda') | |
depth_bins_vec = torch.exp(depth_bins_vec) | |
return depth_bins_vec | |
def register_depth_expectation_anchor(self, bins_num, B): | |
depth_bins_vec = self.get_bins(bins_num) | |
depth_bins_vec = depth_bins_vec.unsqueeze(0).repeat(B, 1) | |
self.register_buffer('depth_expectation_anchor', depth_bins_vec, persistent=False) | |
def forward(self, x): | |
bs, _, h, w = x.shape | |
# features = self.backbone.get_intermediate_layers(x, 4, return_class_token=True) | |
if self.pretrain_type=='dinov2': | |
features = self.backbone.get_intermediate_layers(x, self.intermediate_layer_idx[self.backbone_name], return_class_token=True) | |
patch_h, patch_w = h // 14, w // 14 | |
elif self.pretrain_type=='imagenet': | |
features = self.backbone.get_intermediate_layers(x, self.intermediate_layer_idx[self.backbone_name], return_prefix_tokens=True) | |
patch_h, patch_w = h // 16, w // 16 | |
else: | |
raise NotImplementedError | |
# import pdb;pdb.set_trace() | |
# if 'metric' in self.mode: | |
# prob_feature = self.depth_head(features, patch_h, patch_w) | |
# prob_feature = F.interpolate(prob_feature, size=(h, w), mode="bilinear", align_corners=True) | |
# prob = prob_feature.softmax(dim=1) | |
# if "depth_expectation_anchor" not in self._buffers: | |
# self.register_depth_expectation_anchor(self.num_depth_regressor_anchor, bs) | |
# depth = compute_depth_expectation( | |
# prob, | |
# self.depth_expectation_anchor[:bs, ...] | |
# ).unsqueeze(1) | |
# elif 'disparity' in self.mode or 'rel_depth' in self.mode: | |
# depth = self.depth_head(features, patch_h, patch_w) | |
# depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True) | |
# # import pdb;pdb.set_trace() | |
# depth = F.relu(depth) | |
# else: | |
# raise NotImplementedError | |
depth = self.depth_head(features, patch_h, patch_w) | |
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True) | |
if not self.wo_relu_1_2_channel: | |
depth = F.relu(depth) | |
else: | |
depth[:, 2:] = F.relu(depth[:, 2:]) | |
# import pdb;pdb.set_trace() | |
return depth, features[3][0] | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--encoder", | |
default="vits", | |
type=str, | |
choices=["vits", "vitb", "vitl", "vitg"], | |
) | |
args = parser.parse_args() | |
# model = DepthAnything.from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder)) | |
# model = DepthAnything.from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder)) | |
# print(model) | |
device = 'cuda' | |
image = torch.randn(1,3, 420, 420).to(device) | |
local_hub = "~/.cache/torch/hub/facebookresearch_dinov2_main/" | |
model = DepthAnything(localhub=local_hub,).to(device) | |
output = model(image) | |
import pdb;pdb.set_trace() | |
# .from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder)) | |
print(model) |