File size: 17,471 Bytes
33a65b5
 
 
 
 
 
89a1e10
 
33a65b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import argparse
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from distillanydepth.modeling.backbones.vit.ViT_DINO import vit_large, vit_giant2, vit_base
from distillanydepth.modeling.backbones.vit.ViT_DINO_reg import vit_large_reg, vit_giant2_reg
from timm.models.vision_transformer import vit_large_patch16_224, vit_large_patch14_224

def compute_depth_expectation(prob, depth_values):
    depth_values = depth_values.view(*depth_values.shape, 1, 1)
    depth = torch.sum(prob * depth_values, 1)
    return depth


def _make_scratch(in_shape, out_shape, groups=1, expand=False):
    scratch = nn.Module()

    out_shape1 = out_shape
    out_shape2 = out_shape
    out_shape3 = out_shape
    if len(in_shape) >= 4:
        out_shape4 = out_shape

    if expand:
        out_shape1 = out_shape
        out_shape2 = out_shape*2
        out_shape3 = out_shape*4
        if len(in_shape) >= 4:
            out_shape4 = out_shape*8

    scratch.layer1_rn = nn.Conv2d(
        in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer2_rn = nn.Conv2d(
        in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer3_rn = nn.Conv2d(
        in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    if len(in_shape) >= 4:
        scratch.layer4_rn = nn.Conv2d(
            in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
        )

    return scratch


def _make_fusion_block(features, use_bn, size = None):
    return FeatureFusionBlock(
        features,
        nn.ReLU(False),
        deconv=False,
        bn=use_bn,
        expand=False,
        align_corners=True,
        size=size,
    )


class ResidualConvUnit(nn.Module):
    """Residual convolution module.
    """

    def __init__(self, features, activation, bn):
        """Init.

        Args:
            features (int): number of features
        """
        super().__init__()

        self.bn = bn

        self.groups=1

        self.conv1 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
        )
        
        self.conv2 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
        )

        if self.bn==True:
            self.bn1 = nn.BatchNorm2d(features)
            self.bn2 = nn.BatchNorm2d(features)

        self.activation = activation

        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input

        Returns:
            tensor: output
        """
        
        out = self.activation(x)
        out = self.conv1(out)
        if self.bn==True:
            out = self.bn1(out)
       
        out = self.activation(out)
        out = self.conv2(out)
        if self.bn==True:
            out = self.bn2(out)

        if self.groups > 1:
            out = self.conv_merge(out)

        return self.skip_add.add(out, x)


class FeatureFusionBlock(nn.Module):
    """Feature fusion block.
    """

    def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
        """Init.

        Args:
            features (int): number of features
        """
        super(FeatureFusionBlock, self).__init__()

        self.deconv = deconv
        self.align_corners = align_corners

        self.groups=1

        self.expand = expand
        out_features = features
        if self.expand==True:
            out_features = features//2
        
        self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)

        self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
        self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
        
        self.skip_add = nn.quantized.FloatFunctional()

        self.size=size

    def forward(self, *xs, size=None):
        """Forward pass.

        Returns:
            tensor: output
        """
        output = xs[0]

        if len(xs) == 2:
            res = self.resConfUnit1(xs[1])
            output = self.skip_add.add(output, res)

        output = self.resConfUnit2(output)

        if (size is None) and (self.size is None):
            modifier = {"scale_factor": 2}
        elif size is None:
            modifier = {"size": self.size}
        else:
            modifier = {"size": size}

        output = nn.functional.interpolate(
            output, **modifier, mode="bilinear", align_corners=self.align_corners
        )

        output = self.out_conv(output)

        return output


class DPTHead(nn.Module):
    def __init__(
        self, 
        mode, 
        in_channels, 
        features=256, 
        use_bn=False, 
        out_channels=[256, 512, 1024, 1024], 
        head_out_channels=1,
        use_clstoken=False,
        num_depth_regressor_anchor=512,
        ):
        super(DPTHead, self).__init__()
        
        self.use_clstoken = use_clstoken
        
        self.projects = nn.ModuleList([
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channel,
                kernel_size=1,
                stride=1,
                padding=0,
            ) for out_channel in out_channels
        ])
        
        self.resize_layers = nn.ModuleList([
            nn.ConvTranspose2d(
                in_channels=out_channels[0],
                out_channels=out_channels[0],
                kernel_size=4,
                stride=4,
                padding=0),
            nn.ConvTranspose2d(
                in_channels=out_channels[1],
                out_channels=out_channels[1],
                kernel_size=2,
                stride=2,
                padding=0),
            nn.Identity(),
            nn.Conv2d(
                in_channels=out_channels[3],
                out_channels=out_channels[3],
                kernel_size=3,
                stride=2,
                padding=1)
        ])
        
        if use_clstoken:
            self.readout_projects = nn.ModuleList()
            for _ in range(len(self.projects)):
                self.readout_projects.append(
                    nn.Sequential(
                        nn.Linear(2 * in_channels, in_channels),
                        nn.GELU()))
        
        self.scratch = _make_scratch(
            out_channels,
            features,
            groups=1,
            expand=False,
        )

        self.scratch.stem_transpose = None
        
        self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet4 = _make_fusion_block(features, use_bn)

        head_features_1 = features

        # if nclass > 1:
        #     self.scratch.output_conv = nn.Sequential(
        #         nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
        #         nn.ReLU(True),
        #         nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
        #     )
        # else:

        self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
        
        # if 'metric' in mode:
        #     num_depth_regressor_anchor = 512
        #     # head_features_2 = num_depth_regressor_anchor
        #     self.scratch.output_conv2 = nn.Sequential(
        #         nn.Conv2d(head_features_1 // 2, num_depth_regressor_anchor, kernel_size=3, stride=1, padding=1),
        #         nn.ReLU(True),
        #         nn.Conv2d(num_depth_regressor_anchor, num_depth_regressor_anchor, kernel_size=1, stride=1, padding=0),
        #         # nn.Sigmoid()
        #     )

        # elif 'disparity' in mode or 'rel_depth' in mode:
        #     head_features_2 = 32

        #     self.scratch.output_conv2 = nn.Sequential(
        #         nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
        #         nn.ReLU(True),
        #         nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
        #         nn.ReLU(True),
        #         nn.Identity(),
        #     )
        # else:
        #     raise NotImplementedError

        head_features_2 = 32

        self.scratch.output_conv2 = nn.Sequential(
            nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            nn.Conv2d(head_features_2, head_out_channels, kernel_size=1, stride=1, padding=0),
            # nn.ReLU(True),
            # nn.Identity(),
        )


    def forward(self, out_features, patch_h, patch_w):
        out = []
        for i, x in enumerate(out_features):
            if self.use_clstoken:
                x, cls_token = x[0], x[1]
                readout = cls_token.unsqueeze(1).expand_as(x)
                x = self.readout_projects[i](torch.cat((x, readout), -1))
            else:
                x = x[0]
            # import pdb;pdb.set_trace()
            x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
            
            x = self.projects[i](x)
            x = self.resize_layers[i](x)
            
            out.append(x)
        
        layer_1, layer_2, layer_3, layer_4 = out
        
        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)
        
        path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
        path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
        path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
        out = self.scratch.output_conv1(path_1)

        out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
        out = self.scratch.output_conv2(out)

        # print(out.min())
        # import pdb;pdb.set_trace()

        return out
        

class DepthAnything(nn.Module, PyTorchModelHubMixin):
    # @register_to_config
    def __init__(
        self, 
        encoder='vitl', 
        features=256, 
        out_channels=[256, 512, 1024, 1024], 
        head_out_channels=1,
        wo_relu_1_2_channel=False,
        use_bn=False, 
        use_clstoken=False, 
        # localhub=None
        use_registers=False,
        max_depth=1.0,
        mode='disparity',
        num_depth_regressor_anchor=512,
        depth_normalize=(0.1, 150),
        pretrain_type='dinov2', # sam, imagenet
        del_mask_token=True,
    ):
        super(DepthAnything, self).__init__()
        
        self.pretrain_type = pretrain_type
        self.max_depth = max_depth
        self.mode = mode

        assert encoder in ['vits', 'vitb', 'vitl', "vitg"]

        self.intermediate_layer_idx = {
            'vits': [2, 5, 8, 11],
            'vitb': [2, 5, 8, 11], 
            'vitl': [4, 11, 17, 23], 
            'vitg': [9, 19, 29, 39]
        }

        self.backbone_name = encoder
        # in case the Internet connection is not stable, please load the DINOv2 locally
        # if localhub:
        #     assert type(localhub) == str
        #     # self.backbone = torch.hub.load(localhub, 'dinov2_{:}14'.format(encoder), source='local', pretrained=False)
        #     self.backbone = torch.hub.load(localhub, 'dinov2_{:}14'.format(encoder), source='local', pretrained=True)
        # else:
        #     self.backbone = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder))
        
        if use_registers:
            if encoder == 'vitl':
                checkpoint='data/weights/dinov2/dinov2_vitl14_reg4_pretrain.pth'
                self.backbone = vit_large_reg(checkpoint=checkpoint)
            elif encoder == 'vitg':
                checkpoint='data/weights/dinov2/dinov2_vitg14_reg4_pretrain.pth'
                self.backbone = vit_giant2_reg(checkpoint=checkpoint)
            else:
                raise NotImplementedError
        else:
            if encoder == 'vitl':
                if pretrain_type == 'dinov2':
                    self.backbone = vit_large(checkpoint=None, del_mask_token=del_mask_token)

                # import pdb;pdb.set_trace()
            elif encoder == 'vitb':
                self.backbone = vit_base(checkpoint=None, del_mask_token=del_mask_token)

            elif encoder == 'vitg':
                from geobench.depthanything_v2.dinov2 import DINOv2
                checkpoint='data/weights/dinov2/dinov2_vitg14_pretrain.pth'
                self.backbone = DINOv2(model_name=encoder)
                miss, unexpected = self.backbone.load_state_dict(torch.load(checkpoint, map_location='cpu'), strict=False)
                print('missing keys:', miss)
                print('unexpected keys:', unexpected)
                # import pdb;pdb.set_trace()
                # self.backbone = vit_giant2(checkpoint=checkpoint)
            else:
                raise NotImplementedError


        # dim = self.backbone.blocks[0].attn.qkv.in_features
        dim = self.backbone.embed_dim

        self.min_depth = depth_normalize[0]
        self.max_depth = depth_normalize[1]
        self.num_depth_regressor_anchor = num_depth_regressor_anchor
        self.depth_head = DPTHead(mode, dim, features, use_bn, 
        out_channels=out_channels, 
        head_out_channels=head_out_channels,
        use_clstoken=use_clstoken,
        num_depth_regressor_anchor=num_depth_regressor_anchor,
        )
        # import pdb;pdb.set_trace()

        self.wo_relu_1_2_channel = wo_relu_1_2_channel
        
    def get_bins(self, bins_num):
        depth_bins_vec = torch.linspace(math.log(self.min_depth), math.log(self.max_depth), bins_num, device='cuda')
        depth_bins_vec = torch.exp(depth_bins_vec)
        return depth_bins_vec

    
    def register_depth_expectation_anchor(self, bins_num, B):
        depth_bins_vec = self.get_bins(bins_num)
        depth_bins_vec = depth_bins_vec.unsqueeze(0).repeat(B, 1)
        self.register_buffer('depth_expectation_anchor', depth_bins_vec, persistent=False)

    
    def forward(self, x):

        bs, _, h, w = x.shape
        
        # features = self.backbone.get_intermediate_layers(x, 4, return_class_token=True)

        if self.pretrain_type=='dinov2':
            features = self.backbone.get_intermediate_layers(x, self.intermediate_layer_idx[self.backbone_name], return_class_token=True)
            patch_h, patch_w = h // 14, w // 14

        elif self.pretrain_type=='imagenet':
            features = self.backbone.get_intermediate_layers(x, self.intermediate_layer_idx[self.backbone_name], return_prefix_tokens=True)
            patch_h, patch_w = h // 16, w // 16
        else:
            raise NotImplementedError

        # import pdb;pdb.set_trace()
        
        # if 'metric' in self.mode:
        #     prob_feature = self.depth_head(features, patch_h, patch_w)
        #     prob_feature = F.interpolate(prob_feature, size=(h, w), mode="bilinear", align_corners=True)
        #     prob = prob_feature.softmax(dim=1)

        #     if "depth_expectation_anchor" not in self._buffers:
        #         self.register_depth_expectation_anchor(self.num_depth_regressor_anchor, bs)

        #     depth = compute_depth_expectation(
        #         prob,
        #         self.depth_expectation_anchor[:bs, ...]
        #     ).unsqueeze(1)

        # elif 'disparity' in self.mode or 'rel_depth' in self.mode:
        #     depth = self.depth_head(features, patch_h, patch_w)
        #     depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
        #     # import pdb;pdb.set_trace()
        #     depth = F.relu(depth)
        # else:
        #     raise NotImplementedError
    
        depth = self.depth_head(features, patch_h, patch_w)
        depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
        
        if not self.wo_relu_1_2_channel:
            depth = F.relu(depth)
        else:
            depth[:, 2:] = F.relu(depth[:, 2:])
        # import pdb;pdb.set_trace()

        return depth, features[3][0]


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--encoder",
        default="vits",
        type=str,
        choices=["vits", "vitb", "vitl", "vitg"],
    )
    args = parser.parse_args()
    
    # model = DepthAnything.from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder))
    # model = DepthAnything.from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder))
    # print(model)
    device = 'cuda'
    image = torch.randn(1,3, 420, 420).to(device)
    local_hub = "~/.cache/torch/hub/facebookresearch_dinov2_main/"
    model = DepthAnything(localhub=local_hub,).to(device)
    output = model(image)
    import pdb;pdb.set_trace()
    # .from_pretrained("LiheYoung/depth_anything_{:}14".format(args.encoder))
    print(model)