Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Implemented Metrics for Cell detection | |
# | |
# This code is based on the following repository: https://github.com/TissueImageAnalytics/PanNuke-metrics | |
# | |
# Implemented metrics are: | |
# | |
# Instance Segmentation Metrics | |
# Binary PQ | |
# Multiclass PQ | |
# Neoplastic PQ | |
# Non-Neoplastic PQ | |
# Inflammatory PQ | |
# Dead PQ | |
# Inflammatory PQ | |
# Dead PQ | |
# | |
# Detection and Classification Metrics | |
# Precision, Recall, F1 | |
# | |
# Other | |
# dice1, dice2, aji, aji_plus | |
# | |
# Binary PQ (bPQ): Assumes all nuclei belong to same class and reports the average PQ across tissue types. | |
# Multi-Class PQ (mPQ): Reports the average PQ across the classes and tissue types. | |
# Neoplastic PQ: Reports the PQ for the neoplastic class on all tissues. | |
# Non-Neoplastic PQ: Reports the PQ for the non-neoplastic class on all tissues. | |
# Inflammatory PQ: Reports the PQ for the inflammatory class on all tissues. | |
# Connective PQ: Reports the PQ for the connective class on all tissues. | |
# Dead PQ: Reports the PQ for the dead class on all tissues. | |
# | |
# @ Fabian Hörst, [email protected] | |
# Institute for Artifical Intelligence in Medicine, | |
# University Medicine Essen | |
from typing import List | |
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
def get_fast_pq(true, pred, match_iou=0.5): | |
""" | |
`match_iou` is the IoU threshold level to determine the pairing between | |
GT instances `p` and prediction instances `g`. `p` and `g` is a pair | |
if IoU > `match_iou`. However, pair of `p` and `g` must be unique | |
(1 prediction instance to 1 GT instance mapping). | |
If `match_iou` < 0.5, Munkres assignment (solving minimum weight matching | |
in bipartite graphs) is caculated to find the maximal amount of unique pairing. | |
If `match_iou` >= 0.5, all IoU(p,g) > 0.5 pairing is proven to be unique and | |
the number of pairs is also maximal. | |
Fast computation requires instance IDs are in contiguous orderding | |
i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` beforehand | |
and `by_size` flag has no effect on the result. | |
Returns: | |
[dq, sq, pq]: measurement statistic | |
[paired_true, paired_pred, unpaired_true, unpaired_pred]: | |
pairing information to perform measurement | |
""" | |
assert match_iou >= 0.0, "Cant' be negative" | |
true = np.copy(true) #[256,256] | |
pred = np.copy(pred) #(256,256) #pred是预测的mask | |
true_id_list = list(np.unique(true)) | |
pred_id_list = list(np.unique(pred)) #pred_id_list是预测的mask的id | |
# if there is no background, fixing by adding it | |
if 0 not in pred_id_list: | |
pred_id_list = [0] + pred_id_list | |
true_masks = [ | |
None, | |
] | |
for t in true_id_list[1:]: #t最大8 | |
t_mask = np.array(true == t, np.uint8) | |
true_masks.append(t_mask) #true_masks是真实的mask true_masks[1].shape =[256,256] | |
pred_masks = [ | |
None, | |
] | |
for p in pred_id_list[1:]: #p最大9 | |
p_mask = np.array(pred == p, np.uint8) | |
pred_masks.append(p_mask) #pred_masks是预测的mask pred_masks[1].shape =[256,256] | |
# prefill with value重新填充值 | |
pairwise_iou = np.zeros( | |
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 | |
) | |
# caching pairwise iou for all instances 为所有的实例缓存iou | |
for true_id in true_id_list[1:]: # 0-th is background 0是背景 | |
#import pdb; pdb.set_trace() | |
t_mask = true_masks[true_id] # 256*256为true_id的mask,也就是找到正确的mask | |
#import pdb; pdb.set_trace() | |
pred_true_overlap = pred[t_mask > 0] # 256*256的mask中,找到预测的mask,这两者的交集也就是预测正确的mask,也就是说这个mask是正确的, | |
#t_mask是真实的mask,pred[t_mask > 0]是预测的mask中的pred是用来找到预测的mask的,也就是说pred的形状和t_mask的形状是一样的 | |
#import pdb; pdb.set_trace() | |
pred_true_overlap_id = np.unique(pred_true_overlap) | |
pred_true_overlap_id = list(pred_true_overlap_id) | |
for pred_id in pred_true_overlap_id: | |
if pred_id == 0: # ignore | |
continue # overlaping background | |
p_mask = pred_masks[pred_id] | |
total = (t_mask + p_mask).sum() | |
inter = (t_mask * p_mask).sum() | |
iou = inter / (total - inter) | |
pairwise_iou[true_id - 1, pred_id - 1] = iou | |
# | |
if match_iou >= 0.5: | |
paired_iou = pairwise_iou[pairwise_iou > match_iou] | |
pairwise_iou[pairwise_iou <= match_iou] = 0.0 | |
paired_true, paired_pred = np.nonzero(pairwise_iou) | |
paired_iou = pairwise_iou[paired_true, paired_pred] | |
paired_true += 1 # index is instance id - 1 | |
paired_pred += 1 # hence return back to original | |
else: # * Exhaustive maximal unique pairing | |
#### Munkres pairing with scipy library | |
# the algorithm return (row indices, matched column indices) | |
# if there is multiple same cost in a row, index of first occurence | |
# is return, thus the unique pairing is ensure | |
# inverse pair to get high IoU as minimum | |
paired_true, paired_pred = linear_sum_assignment(-pairwise_iou) | |
### extract the paired cost and remove invalid pair | |
paired_iou = pairwise_iou[paired_true, paired_pred] | |
# now select those above threshold level | |
# paired with iou = 0.0 i.e no intersection => FP or FN | |
paired_true = list(paired_true[paired_iou > match_iou] + 1) | |
paired_pred = list(paired_pred[paired_iou > match_iou] + 1) | |
paired_iou = paired_iou[paired_iou > match_iou] | |
# get the actual FP and FN | |
unpaired_true = [idx for idx in true_id_list[1:] if idx not in paired_true] | |
unpaired_pred = [idx for idx in pred_id_list[1:] if idx not in paired_pred] | |
# print(paired_iou.shape, paired_true.shape, len(unpaired_true), len(unpaired_pred)) | |
# | |
tp = len(paired_true) | |
fp = len(unpaired_pred) | |
fn = len(unpaired_true) | |
# get the F1-score i.e DQ | |
dq = tp / (tp + 0.5 * fp + 0.5 * fn + 1.0e-6) # good practice? | |
# get the SQ, no paired has 0 iou so not impact | |
sq = paired_iou.sum() / (tp + 1.0e-6) | |
return [dq, sq, dq * sq], [paired_true, paired_pred, unpaired_true, unpaired_pred] | |
##### | |
def remap_label(pred, by_size=False): | |
""" | |
Rename all instance id so that the id is contiguous i.e [0, 1, 2, 3] | |
not [0, 2, 4, 6]. The ordering of instances (which one comes first) | |
is preserved unless by_size=True, then the instances will be reordered | |
so that bigger nucler has smaller ID | |
Args: | |
pred : the 2d array contain instances where each instances is marked | |
by non-zero integer | |
by_size : renaming with larger nuclei has smaller id (on-top) | |
""" | |
pred_id = list(np.unique(pred)) | |
if 0 in pred_id: | |
pred_id.remove(0) | |
if len(pred_id) == 0: | |
return pred # no label | |
if by_size: | |
pred_size = [] | |
for inst_id in pred_id: | |
size = (pred == inst_id).sum() | |
pred_size.append(size) | |
# sort the id by size in descending order | |
pair_list = zip(pred_id, pred_size) | |
pair_list = sorted(pair_list, key=lambda x: x[1], reverse=True) | |
pred_id, pred_size = zip(*pair_list) | |
new_pred = np.zeros(pred.shape, np.int32) | |
for idx, inst_id in enumerate(pred_id): | |
new_pred[pred == inst_id] = idx + 1 | |
return new_pred | |
#### | |
def binarize(x): | |
""" | |
convert multichannel (multiclass) instance segmetation tensor | |
to binary instance segmentation (bg and nuclei), | |
:param x: B*B*C (for PanNuke 256*256*5 ) | |
:return: Instance segmentation 这段代码的作用是将多通道的mask转换为单通道的mask | |
""" | |
#x = np.transpose(x, (1, 2, 0)) #[256,256,5] | |
out = np.zeros([x.shape[0], x.shape[1]]) #首先为out赋值为0,形状为256*256 | |
count = 1 | |
for i in range(x.shape[2]): #遍历通道数 | |
x_ch = x[:, :, i] #[256,256] #取出每个通道的mask 形状为256*256 | |
unique_vals = np.unique(x_ch) #找到每个通道的mask中的唯一值,形状为(1,) | |
unique_vals = unique_vals.tolist() #将unique_vals转换为list | |
unique_vals.remove(0) #移除0 | |
for j in unique_vals: #遍历unique_vals,也就是遍历每个通道的mask中的唯一值 | |
x_tmp = x_ch == j #找到每个通道的mask中的唯一值的mask,在创建一个布尔类型的数组,其中元素为 True 的位置表示原始数组 x_ch 中对应位置的元素等于 j,元素为 False 的位置表示不等于 j | |
x_tmp_c = 1 - x_tmp #找到每个通道的mask中的唯一值的mask的补集 | |
out *= x_tmp_c #将out中的值乘以x_tmp_c | |
out += count * x_tmp #将out中的值加上count*x_tmp | |
count += 1 | |
out = out.astype("int32") | |
return out | |
def get_tissue_idx(tissue_indices, idx): | |
for i in range(len(tissue_indices)): | |
if tissue_indices[i].count(idx) == 1: | |
tiss_idx = i | |
return tiss_idx | |
def cell_detection_scores( | |
paired_true, paired_pred, unpaired_true, unpaired_pred, w: List = [1, 1] | |
): | |
tp_d = paired_pred.shape[0] | |
fp_d = unpaired_pred.shape[0] | |
fn_d = unpaired_true.shape[0] | |
# tp_tn_dt = (paired_pred == paired_true).sum() | |
# fp_fn_dt = (paired_pred != paired_true).sum() | |
prec_d = tp_d / (tp_d + fp_d) | |
rec_d = tp_d / (tp_d + fn_d) | |
f1_d = 2 * tp_d / (2 * tp_d + w[0] * fp_d + w[1] * fn_d) | |
return f1_d, prec_d, rec_d | |
def cell_type_detection_scores( | |
paired_true, | |
paired_pred, | |
unpaired_true, | |
unpaired_pred, | |
type_id, | |
w: List = [2, 2, 1, 1], | |
exhaustive: bool = True, | |
): | |
type_samples = (paired_true == type_id) | (paired_pred == type_id) | |
paired_true = paired_true[type_samples] | |
paired_pred = paired_pred[type_samples] | |
tp_dt = ((paired_true == type_id) & (paired_pred == type_id)).sum() | |
tn_dt = ((paired_true != type_id) & (paired_pred != type_id)).sum() | |
fp_dt = ((paired_true != type_id) & (paired_pred == type_id)).sum() | |
fn_dt = ((paired_true == type_id) & (paired_pred != type_id)).sum() | |
if not exhaustive: | |
ignore = (paired_true == -1).sum() | |
fp_dt -= ignore | |
fp_d = (unpaired_pred == type_id).sum() # | |
fn_d = (unpaired_true == type_id).sum() | |
prec_type = (tp_dt + tn_dt) / (tp_dt + tn_dt + w[0] * fp_dt + w[2] * fp_d) | |
rec_type = (tp_dt + tn_dt) / (tp_dt + tn_dt + w[1] * fn_dt + w[3] * fn_d) | |
f1_type = (2 * (tp_dt + tn_dt)) / ( | |
2 * (tp_dt + tn_dt) + w[0] * fp_dt + w[1] * fn_dt + w[2] * fp_d + w[3] * fn_d | |
) | |
return f1_type, prec_type, rec_type | |