qingke1's picture
initial commit
aea73e2
raw
history blame
10.7 kB
# -*- coding: utf-8 -*-
# Implemented Metrics for Cell detection
#
# This code is based on the following repository: https://github.com/TissueImageAnalytics/PanNuke-metrics
#
# Implemented metrics are:
#
# Instance Segmentation Metrics
# Binary PQ
# Multiclass PQ
# Neoplastic PQ
# Non-Neoplastic PQ
# Inflammatory PQ
# Dead PQ
# Inflammatory PQ
# Dead PQ
#
# Detection and Classification Metrics
# Precision, Recall, F1
#
# Other
# dice1, dice2, aji, aji_plus
#
# Binary PQ (bPQ): Assumes all nuclei belong to same class and reports the average PQ across tissue types.
# Multi-Class PQ (mPQ): Reports the average PQ across the classes and tissue types.
# Neoplastic PQ: Reports the PQ for the neoplastic class on all tissues.
# Non-Neoplastic PQ: Reports the PQ for the non-neoplastic class on all tissues.
# Inflammatory PQ: Reports the PQ for the inflammatory class on all tissues.
# Connective PQ: Reports the PQ for the connective class on all tissues.
# Dead PQ: Reports the PQ for the dead class on all tissues.
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
from typing import List
import numpy as np
from scipy.optimize import linear_sum_assignment
def get_fast_pq(true, pred, match_iou=0.5):
"""
`match_iou` is the IoU threshold level to determine the pairing between
GT instances `p` and prediction instances `g`. `p` and `g` is a pair
if IoU > `match_iou`. However, pair of `p` and `g` must be unique
(1 prediction instance to 1 GT instance mapping).
If `match_iou` < 0.5, Munkres assignment (solving minimum weight matching
in bipartite graphs) is caculated to find the maximal amount of unique pairing.
If `match_iou` >= 0.5, all IoU(p,g) > 0.5 pairing is proven to be unique and
the number of pairs is also maximal.
Fast computation requires instance IDs are in contiguous orderding
i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` beforehand
and `by_size` flag has no effect on the result.
Returns:
[dq, sq, pq]: measurement statistic
[paired_true, paired_pred, unpaired_true, unpaired_pred]:
pairing information to perform measurement
"""
assert match_iou >= 0.0, "Cant' be negative"
true = np.copy(true) #[256,256]
pred = np.copy(pred) #(256,256) #pred是预测的mask
true_id_list = list(np.unique(true))
pred_id_list = list(np.unique(pred)) #pred_id_list是预测的mask的id
# if there is no background, fixing by adding it
if 0 not in pred_id_list:
pred_id_list = [0] + pred_id_list
true_masks = [
None,
]
for t in true_id_list[1:]: #t最大8
t_mask = np.array(true == t, np.uint8)
true_masks.append(t_mask) #true_masks是真实的mask true_masks[1].shape =[256,256]
pred_masks = [
None,
]
for p in pred_id_list[1:]: #p最大9
p_mask = np.array(pred == p, np.uint8)
pred_masks.append(p_mask) #pred_masks是预测的mask pred_masks[1].shape =[256,256]
# prefill with value重新填充值
pairwise_iou = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
# caching pairwise iou for all instances 为所有的实例缓存iou
for true_id in true_id_list[1:]: # 0-th is background 0是背景
#import pdb; pdb.set_trace()
t_mask = true_masks[true_id] # 256*256为true_id的mask,也就是找到正确的mask
#import pdb; pdb.set_trace()
pred_true_overlap = pred[t_mask > 0] # 256*256的mask中,找到预测的mask,这两者的交集也就是预测正确的mask,也就是说这个mask是正确的,
#t_mask是真实的mask,pred[t_mask > 0]是预测的mask中的pred是用来找到预测的mask的,也就是说pred的形状和t_mask的形状是一样的
#import pdb; pdb.set_trace()
pred_true_overlap_id = np.unique(pred_true_overlap)
pred_true_overlap_id = list(pred_true_overlap_id)
for pred_id in pred_true_overlap_id:
if pred_id == 0: # ignore
continue # overlaping background
p_mask = pred_masks[pred_id]
total = (t_mask + p_mask).sum()
inter = (t_mask * p_mask).sum()
iou = inter / (total - inter)
pairwise_iou[true_id - 1, pred_id - 1] = iou
#
if match_iou >= 0.5:
paired_iou = pairwise_iou[pairwise_iou > match_iou]
pairwise_iou[pairwise_iou <= match_iou] = 0.0
paired_true, paired_pred = np.nonzero(pairwise_iou)
paired_iou = pairwise_iou[paired_true, paired_pred]
paired_true += 1 # index is instance id - 1
paired_pred += 1 # hence return back to original
else: # * Exhaustive maximal unique pairing
#### Munkres pairing with scipy library
# the algorithm return (row indices, matched column indices)
# if there is multiple same cost in a row, index of first occurence
# is return, thus the unique pairing is ensure
# inverse pair to get high IoU as minimum
paired_true, paired_pred = linear_sum_assignment(-pairwise_iou)
### extract the paired cost and remove invalid pair
paired_iou = pairwise_iou[paired_true, paired_pred]
# now select those above threshold level
# paired with iou = 0.0 i.e no intersection => FP or FN
paired_true = list(paired_true[paired_iou > match_iou] + 1)
paired_pred = list(paired_pred[paired_iou > match_iou] + 1)
paired_iou = paired_iou[paired_iou > match_iou]
# get the actual FP and FN
unpaired_true = [idx for idx in true_id_list[1:] if idx not in paired_true]
unpaired_pred = [idx for idx in pred_id_list[1:] if idx not in paired_pred]
# print(paired_iou.shape, paired_true.shape, len(unpaired_true), len(unpaired_pred))
#
tp = len(paired_true)
fp = len(unpaired_pred)
fn = len(unpaired_true)
# get the F1-score i.e DQ
dq = tp / (tp + 0.5 * fp + 0.5 * fn + 1.0e-6) # good practice?
# get the SQ, no paired has 0 iou so not impact
sq = paired_iou.sum() / (tp + 1.0e-6)
return [dq, sq, dq * sq], [paired_true, paired_pred, unpaired_true, unpaired_pred]
#####
def remap_label(pred, by_size=False):
"""
Rename all instance id so that the id is contiguous i.e [0, 1, 2, 3]
not [0, 2, 4, 6]. The ordering of instances (which one comes first)
is preserved unless by_size=True, then the instances will be reordered
so that bigger nucler has smaller ID
Args:
pred : the 2d array contain instances where each instances is marked
by non-zero integer
by_size : renaming with larger nuclei has smaller id (on-top)
"""
pred_id = list(np.unique(pred))
if 0 in pred_id:
pred_id.remove(0)
if len(pred_id) == 0:
return pred # no label
if by_size:
pred_size = []
for inst_id in pred_id:
size = (pred == inst_id).sum()
pred_size.append(size)
# sort the id by size in descending order
pair_list = zip(pred_id, pred_size)
pair_list = sorted(pair_list, key=lambda x: x[1], reverse=True)
pred_id, pred_size = zip(*pair_list)
new_pred = np.zeros(pred.shape, np.int32)
for idx, inst_id in enumerate(pred_id):
new_pred[pred == inst_id] = idx + 1
return new_pred
####
def binarize(x):
"""
convert multichannel (multiclass) instance segmetation tensor
to binary instance segmentation (bg and nuclei),
:param x: B*B*C (for PanNuke 256*256*5 )
:return: Instance segmentation 这段代码的作用是将多通道的mask转换为单通道的mask
"""
#x = np.transpose(x, (1, 2, 0)) #[256,256,5]
out = np.zeros([x.shape[0], x.shape[1]]) #首先为out赋值为0,形状为256*256
count = 1
for i in range(x.shape[2]): #遍历通道数
x_ch = x[:, :, i] #[256,256] #取出每个通道的mask 形状为256*256
unique_vals = np.unique(x_ch) #找到每个通道的mask中的唯一值,形状为(1,)
unique_vals = unique_vals.tolist() #将unique_vals转换为list
unique_vals.remove(0) #移除0
for j in unique_vals: #遍历unique_vals,也就是遍历每个通道的mask中的唯一值
x_tmp = x_ch == j #找到每个通道的mask中的唯一值的mask,在创建一个布尔类型的数组,其中元素为 True 的位置表示原始数组 x_ch 中对应位置的元素等于 j,元素为 False 的位置表示不等于 j
x_tmp_c = 1 - x_tmp #找到每个通道的mask中的唯一值的mask的补集
out *= x_tmp_c #将out中的值乘以x_tmp_c
out += count * x_tmp #将out中的值加上count*x_tmp
count += 1
out = out.astype("int32")
return out
def get_tissue_idx(tissue_indices, idx):
for i in range(len(tissue_indices)):
if tissue_indices[i].count(idx) == 1:
tiss_idx = i
return tiss_idx
def cell_detection_scores(
paired_true, paired_pred, unpaired_true, unpaired_pred, w: List = [1, 1]
):
tp_d = paired_pred.shape[0]
fp_d = unpaired_pred.shape[0]
fn_d = unpaired_true.shape[0]
# tp_tn_dt = (paired_pred == paired_true).sum()
# fp_fn_dt = (paired_pred != paired_true).sum()
prec_d = tp_d / (tp_d + fp_d)
rec_d = tp_d / (tp_d + fn_d)
f1_d = 2 * tp_d / (2 * tp_d + w[0] * fp_d + w[1] * fn_d)
return f1_d, prec_d, rec_d
def cell_type_detection_scores(
paired_true,
paired_pred,
unpaired_true,
unpaired_pred,
type_id,
w: List = [2, 2, 1, 1],
exhaustive: bool = True,
):
type_samples = (paired_true == type_id) | (paired_pred == type_id)
paired_true = paired_true[type_samples]
paired_pred = paired_pred[type_samples]
tp_dt = ((paired_true == type_id) & (paired_pred == type_id)).sum()
tn_dt = ((paired_true != type_id) & (paired_pred != type_id)).sum()
fp_dt = ((paired_true != type_id) & (paired_pred == type_id)).sum()
fn_dt = ((paired_true == type_id) & (paired_pred != type_id)).sum()
if not exhaustive:
ignore = (paired_true == -1).sum()
fp_dt -= ignore
fp_d = (unpaired_pred == type_id).sum() #
fn_d = (unpaired_true == type_id).sum()
prec_type = (tp_dt + tn_dt) / (tp_dt + tn_dt + w[0] * fp_dt + w[2] * fp_d)
rec_type = (tp_dt + tn_dt) / (tp_dt + tn_dt + w[1] * fn_dt + w[3] * fn_d)
f1_type = (2 * (tp_dt + tn_dt)) / (
2 * (tp_dt + tn_dt) + w[0] * fp_dt + w[1] * fn_dt + w[2] * fp_d + w[3] * fn_d
)
return f1_type, prec_type, rec_type