Spaces:
Running
Running
File size: 10,710 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# -*- coding: utf-8 -*-
# Implemented Metrics for Cell detection
#
# This code is based on the following repository: https://github.com/TissueImageAnalytics/PanNuke-metrics
#
# Implemented metrics are:
#
# Instance Segmentation Metrics
# Binary PQ
# Multiclass PQ
# Neoplastic PQ
# Non-Neoplastic PQ
# Inflammatory PQ
# Dead PQ
# Inflammatory PQ
# Dead PQ
#
# Detection and Classification Metrics
# Precision, Recall, F1
#
# Other
# dice1, dice2, aji, aji_plus
#
# Binary PQ (bPQ): Assumes all nuclei belong to same class and reports the average PQ across tissue types.
# Multi-Class PQ (mPQ): Reports the average PQ across the classes and tissue types.
# Neoplastic PQ: Reports the PQ for the neoplastic class on all tissues.
# Non-Neoplastic PQ: Reports the PQ for the non-neoplastic class on all tissues.
# Inflammatory PQ: Reports the PQ for the inflammatory class on all tissues.
# Connective PQ: Reports the PQ for the connective class on all tissues.
# Dead PQ: Reports the PQ for the dead class on all tissues.
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
from typing import List
import numpy as np
from scipy.optimize import linear_sum_assignment
def get_fast_pq(true, pred, match_iou=0.5):
"""
`match_iou` is the IoU threshold level to determine the pairing between
GT instances `p` and prediction instances `g`. `p` and `g` is a pair
if IoU > `match_iou`. However, pair of `p` and `g` must be unique
(1 prediction instance to 1 GT instance mapping).
If `match_iou` < 0.5, Munkres assignment (solving minimum weight matching
in bipartite graphs) is caculated to find the maximal amount of unique pairing.
If `match_iou` >= 0.5, all IoU(p,g) > 0.5 pairing is proven to be unique and
the number of pairs is also maximal.
Fast computation requires instance IDs are in contiguous orderding
i.e [1, 2, 3, 4] not [2, 3, 6, 10]. Please call `remap_label` beforehand
and `by_size` flag has no effect on the result.
Returns:
[dq, sq, pq]: measurement statistic
[paired_true, paired_pred, unpaired_true, unpaired_pred]:
pairing information to perform measurement
"""
assert match_iou >= 0.0, "Cant' be negative"
true = np.copy(true) #[256,256]
pred = np.copy(pred) #(256,256) #pred是预测的mask
true_id_list = list(np.unique(true))
pred_id_list = list(np.unique(pred)) #pred_id_list是预测的mask的id
# if there is no background, fixing by adding it
if 0 not in pred_id_list:
pred_id_list = [0] + pred_id_list
true_masks = [
None,
]
for t in true_id_list[1:]: #t最大8
t_mask = np.array(true == t, np.uint8)
true_masks.append(t_mask) #true_masks是真实的mask true_masks[1].shape =[256,256]
pred_masks = [
None,
]
for p in pred_id_list[1:]: #p最大9
p_mask = np.array(pred == p, np.uint8)
pred_masks.append(p_mask) #pred_masks是预测的mask pred_masks[1].shape =[256,256]
# prefill with value重新填充值
pairwise_iou = np.zeros(
[len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64
)
# caching pairwise iou for all instances 为所有的实例缓存iou
for true_id in true_id_list[1:]: # 0-th is background 0是背景
#import pdb; pdb.set_trace()
t_mask = true_masks[true_id] # 256*256为true_id的mask,也就是找到正确的mask
#import pdb; pdb.set_trace()
pred_true_overlap = pred[t_mask > 0] # 256*256的mask中,找到预测的mask,这两者的交集也就是预测正确的mask,也就是说这个mask是正确的,
#t_mask是真实的mask,pred[t_mask > 0]是预测的mask中的pred是用来找到预测的mask的,也就是说pred的形状和t_mask的形状是一样的
#import pdb; pdb.set_trace()
pred_true_overlap_id = np.unique(pred_true_overlap)
pred_true_overlap_id = list(pred_true_overlap_id)
for pred_id in pred_true_overlap_id:
if pred_id == 0: # ignore
continue # overlaping background
p_mask = pred_masks[pred_id]
total = (t_mask + p_mask).sum()
inter = (t_mask * p_mask).sum()
iou = inter / (total - inter)
pairwise_iou[true_id - 1, pred_id - 1] = iou
#
if match_iou >= 0.5:
paired_iou = pairwise_iou[pairwise_iou > match_iou]
pairwise_iou[pairwise_iou <= match_iou] = 0.0
paired_true, paired_pred = np.nonzero(pairwise_iou)
paired_iou = pairwise_iou[paired_true, paired_pred]
paired_true += 1 # index is instance id - 1
paired_pred += 1 # hence return back to original
else: # * Exhaustive maximal unique pairing
#### Munkres pairing with scipy library
# the algorithm return (row indices, matched column indices)
# if there is multiple same cost in a row, index of first occurence
# is return, thus the unique pairing is ensure
# inverse pair to get high IoU as minimum
paired_true, paired_pred = linear_sum_assignment(-pairwise_iou)
### extract the paired cost and remove invalid pair
paired_iou = pairwise_iou[paired_true, paired_pred]
# now select those above threshold level
# paired with iou = 0.0 i.e no intersection => FP or FN
paired_true = list(paired_true[paired_iou > match_iou] + 1)
paired_pred = list(paired_pred[paired_iou > match_iou] + 1)
paired_iou = paired_iou[paired_iou > match_iou]
# get the actual FP and FN
unpaired_true = [idx for idx in true_id_list[1:] if idx not in paired_true]
unpaired_pred = [idx for idx in pred_id_list[1:] if idx not in paired_pred]
# print(paired_iou.shape, paired_true.shape, len(unpaired_true), len(unpaired_pred))
#
tp = len(paired_true)
fp = len(unpaired_pred)
fn = len(unpaired_true)
# get the F1-score i.e DQ
dq = tp / (tp + 0.5 * fp + 0.5 * fn + 1.0e-6) # good practice?
# get the SQ, no paired has 0 iou so not impact
sq = paired_iou.sum() / (tp + 1.0e-6)
return [dq, sq, dq * sq], [paired_true, paired_pred, unpaired_true, unpaired_pred]
#####
def remap_label(pred, by_size=False):
"""
Rename all instance id so that the id is contiguous i.e [0, 1, 2, 3]
not [0, 2, 4, 6]. The ordering of instances (which one comes first)
is preserved unless by_size=True, then the instances will be reordered
so that bigger nucler has smaller ID
Args:
pred : the 2d array contain instances where each instances is marked
by non-zero integer
by_size : renaming with larger nuclei has smaller id (on-top)
"""
pred_id = list(np.unique(pred))
if 0 in pred_id:
pred_id.remove(0)
if len(pred_id) == 0:
return pred # no label
if by_size:
pred_size = []
for inst_id in pred_id:
size = (pred == inst_id).sum()
pred_size.append(size)
# sort the id by size in descending order
pair_list = zip(pred_id, pred_size)
pair_list = sorted(pair_list, key=lambda x: x[1], reverse=True)
pred_id, pred_size = zip(*pair_list)
new_pred = np.zeros(pred.shape, np.int32)
for idx, inst_id in enumerate(pred_id):
new_pred[pred == inst_id] = idx + 1
return new_pred
####
def binarize(x):
"""
convert multichannel (multiclass) instance segmetation tensor
to binary instance segmentation (bg and nuclei),
:param x: B*B*C (for PanNuke 256*256*5 )
:return: Instance segmentation 这段代码的作用是将多通道的mask转换为单通道的mask
"""
#x = np.transpose(x, (1, 2, 0)) #[256,256,5]
out = np.zeros([x.shape[0], x.shape[1]]) #首先为out赋值为0,形状为256*256
count = 1
for i in range(x.shape[2]): #遍历通道数
x_ch = x[:, :, i] #[256,256] #取出每个通道的mask 形状为256*256
unique_vals = np.unique(x_ch) #找到每个通道的mask中的唯一值,形状为(1,)
unique_vals = unique_vals.tolist() #将unique_vals转换为list
unique_vals.remove(0) #移除0
for j in unique_vals: #遍历unique_vals,也就是遍历每个通道的mask中的唯一值
x_tmp = x_ch == j #找到每个通道的mask中的唯一值的mask,在创建一个布尔类型的数组,其中元素为 True 的位置表示原始数组 x_ch 中对应位置的元素等于 j,元素为 False 的位置表示不等于 j
x_tmp_c = 1 - x_tmp #找到每个通道的mask中的唯一值的mask的补集
out *= x_tmp_c #将out中的值乘以x_tmp_c
out += count * x_tmp #将out中的值加上count*x_tmp
count += 1
out = out.astype("int32")
return out
def get_tissue_idx(tissue_indices, idx):
for i in range(len(tissue_indices)):
if tissue_indices[i].count(idx) == 1:
tiss_idx = i
return tiss_idx
def cell_detection_scores(
paired_true, paired_pred, unpaired_true, unpaired_pred, w: List = [1, 1]
):
tp_d = paired_pred.shape[0]
fp_d = unpaired_pred.shape[0]
fn_d = unpaired_true.shape[0]
# tp_tn_dt = (paired_pred == paired_true).sum()
# fp_fn_dt = (paired_pred != paired_true).sum()
prec_d = tp_d / (tp_d + fp_d)
rec_d = tp_d / (tp_d + fn_d)
f1_d = 2 * tp_d / (2 * tp_d + w[0] * fp_d + w[1] * fn_d)
return f1_d, prec_d, rec_d
def cell_type_detection_scores(
paired_true,
paired_pred,
unpaired_true,
unpaired_pred,
type_id,
w: List = [2, 2, 1, 1],
exhaustive: bool = True,
):
type_samples = (paired_true == type_id) | (paired_pred == type_id)
paired_true = paired_true[type_samples]
paired_pred = paired_pred[type_samples]
tp_dt = ((paired_true == type_id) & (paired_pred == type_id)).sum()
tn_dt = ((paired_true != type_id) & (paired_pred != type_id)).sum()
fp_dt = ((paired_true != type_id) & (paired_pred == type_id)).sum()
fn_dt = ((paired_true == type_id) & (paired_pred != type_id)).sum()
if not exhaustive:
ignore = (paired_true == -1).sum()
fp_dt -= ignore
fp_d = (unpaired_pred == type_id).sum() #
fn_d = (unpaired_true == type_id).sum()
prec_type = (tp_dt + tn_dt) / (tp_dt + tn_dt + w[0] * fp_dt + w[2] * fp_d)
rec_type = (tp_dt + tn_dt) / (tp_dt + tn_dt + w[1] * fn_dt + w[3] * fn_d)
f1_type = (2 * (tp_dt + tn_dt)) / (
2 * (tp_dt + tn_dt) + w[0] * fp_dt + w[1] * fn_dt + w[2] * fp_d + w[3] * fn_d
)
return f1_type, prec_type, rec_type
|