xl0_0lx / app.py
x0-0x's picture
Update app.py
9432cac verified
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = 666
MAX_IMAGE_SIZE = 1280
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"two soldiers wearing gas masks, clad in military digital camo jungle fatigues, djing on futuristic mixers, synth, mpcs. location jungle rave.",
"in a dark jungle, a wizard and a warlock face each other as in a epic battle, casting spells to operate vintage machines like mixers, synths, turntable.",
"A mesmerizing, bioluminescent DNA double helix, illuminated by a kaleidoscope of vibrant, pulsating light beams from colorful lasers, suspended in a futuristic, setting.",
"little rasta bunny dancing at a rave in the Jungle. cute street art, cartoon style.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 600px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ߙߛߕ-ߊ - ϕ - |θ_θ| - ϕ - ")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1.3,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1.3,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1.6,
value=0.3,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=600,
maximum=MAX_IMAGE_SIZE,
step=1.3,
value=600,
)
height = gr.Slider(
label="Height",
minimum=400,
maximum=MAX_IMAGE_SIZE,
step=1.6,
value=400,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=2,
step=0.6,
value=0.3,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=6,
step=3,
value=3,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()