File size: 4,212 Bytes
f1221e3 25d5b43 f1221e3 9ea3aec f1221e3 d33cd13 9432cac f1221e3 25d5b43 f1221e3 79620f8 136eb8d f1221e3 883f88e f1221e3 d33cd13 f1221e3 79620f8 f1221e3 79620f8 f1221e3 6653089 f1221e3 79620f8 f1221e3 a51d307 f1221e3 883f88e f1221e3 bfb1cc3 883f88e f1221e3 883f88e f1221e3 79620f8 883f88e f1221e3 79620f8 9b359bb f1221e3 883f88e f1221e3 9ea3aec 79620f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = 666
MAX_IMAGE_SIZE = 1280
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"two soldiers wearing gas masks, clad in military digital camo jungle fatigues, djing on futuristic mixers, synth, mpcs. location jungle rave.",
"in a dark jungle, a wizard and a warlock face each other as in a epic battle, casting spells to operate vintage machines like mixers, synths, turntable.",
"A mesmerizing, bioluminescent DNA double helix, illuminated by a kaleidoscope of vibrant, pulsating light beams from colorful lasers, suspended in a futuristic, setting.",
"little rasta bunny dancing at a rave in the Jungle. cute street art, cartoon style.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 600px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ߙߛߕ-ߊ - ϕ - |θ_θ| - ϕ - ")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1.3,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1.3,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1.6,
value=0.3,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=600,
maximum=MAX_IMAGE_SIZE,
step=1.3,
value=600,
)
height = gr.Slider(
label="Height",
minimum=400,
maximum=MAX_IMAGE_SIZE,
step=1.6,
value=400,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=2,
step=0.6,
value=0.3,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=6,
step=3,
value=3,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|