|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .utils import get_activation_fn |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
flip_sin_to_cos: bool = False, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
) -> torch.Tensor: |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange( |
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device |
|
) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) |
|
|
|
|
|
if flip_sin_to_cos: |
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str, |
|
out_dim: Optional[int] = None, post_act_fn: Optional[str] = None, |
|
cond_proj_dim: Optional[int] = None, zero_init_cond: bool = True) -> None: |
|
super(TimestepEmbedding, self).__init__() |
|
|
|
self.linear_1 = nn.Linear(in_channels, time_embed_dim) |
|
|
|
if cond_proj_dim is not None: |
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) |
|
if zero_init_cond: |
|
self.cond_proj.weight.data.fill_(0.0) |
|
else: |
|
self.cond_proj = None |
|
|
|
self.act = get_activation_fn(act_fn) |
|
|
|
if out_dim is not None: |
|
time_embed_dim_out = out_dim |
|
else: |
|
time_embed_dim_out = time_embed_dim |
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) |
|
|
|
if post_act_fn is None: |
|
self.post_act = None |
|
else: |
|
self.post_act = get_activation_fn(post_act_fn) |
|
|
|
def forward(self, sample: torch.Tensor, timestep_cond: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
if timestep_cond is not None: |
|
sample = sample + self.cond_proj(timestep_cond) |
|
sample = self.linear_1(sample) |
|
sample = self.act(sample) |
|
sample = self.linear_2(sample) |
|
if self.post_act is not None: |
|
sample = self.post_act(sample) |
|
return sample |
|
|
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, |
|
downscale_freq_shift: float) -> None: |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
self.downscale_freq_shift = downscale_freq_shift |
|
|
|
def forward(self, timesteps: torch.Tensor) -> torch.Tensor: |
|
t_emb = get_timestep_embedding( |
|
timesteps, |
|
self.num_channels, |
|
flip_sin_to_cos=self.flip_sin_to_cos, |
|
downscale_freq_shift=self.downscale_freq_shift) |
|
return t_emb |
|
|