File size: 3,203 Bytes
eb339cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import math
from typing import Optional

import torch
import torch.nn as nn

from .utils import get_activation_fn


def get_timestep_embedding(
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
) -> torch.Tensor:
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"

    half_dim = embedding_dim // 2
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
    exponent = exponent / (half_dim - downscale_freq_shift)

    emb = torch.exp(exponent)
    emb = timesteps[:, None].float() * emb[None, :]

    # scale embeddings
    emb = scale * emb

    # concat sine and cosine embeddings
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)

    # flip sine and cosine embeddings
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


class TimestepEmbedding(nn.Module):
    def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str,
                 out_dim: Optional[int] = None, post_act_fn: Optional[str] = None,
                 cond_proj_dim: Optional[int] = None, zero_init_cond: bool = True) -> None:
        super(TimestepEmbedding, self).__init__()

        self.linear_1 = nn.Linear(in_channels, time_embed_dim)

        if cond_proj_dim is not None:
            self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
            if zero_init_cond:
                self.cond_proj.weight.data.fill_(0.0)
        else:
            self.cond_proj = None

        self.act = get_activation_fn(act_fn)

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)

        if post_act_fn is None:
            self.post_act = None
        else:
            self.post_act = get_activation_fn(post_act_fn)

    def forward(self, sample: torch.Tensor, timestep_cond: Optional[torch.Tensor] = None) -> torch.Tensor:
        if timestep_cond is not None:
            sample = sample + self.cond_proj(timestep_cond)
        sample = self.linear_1(sample)
        sample = self.act(sample)
        sample = self.linear_2(sample)
        if self.post_act is not None:
            sample = self.post_act(sample)
        return sample


class Timesteps(nn.Module):
    def __init__(self, num_channels: int, flip_sin_to_cos: bool,
                 downscale_freq_shift: float) -> None:
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift

    def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift)
        return t_emb