myr1 / app.py
wuhp's picture
Update app.py
eabbd4b verified
raw
history blame
3.24 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# ----------------------------------------------------------------
# 1) Points to your Hugging Face repo and subfolder
# (where config.json, tokenizer.json, model safetensors, etc. reside).
# ----------------------------------------------------------------
MODEL_REPO = "wuhp/myr1"
SUBFOLDER = "myr1"
# ----------------------------------------------------------------
# 2) Load the tokenizer
# trust_remote_code=True allows custom code (e.g., DeepSeek config/classes).
# ----------------------------------------------------------------
tokenizer = AutoTokenizer.from_pretrained(
MODEL_REPO,
subfolder=SUBFOLDER,
trust_remote_code=True
)
# ----------------------------------------------------------------
# 3) Load the model
# - device_map="auto" tries to place layers on GPU and offload remainder to CPU if needed
# - torch_dtype can be float16, float32, bfloat16, etc., depending on GPU support
# ----------------------------------------------------------------
model = AutoModelForCausalLM.from_pretrained(
MODEL_REPO,
subfolder=SUBFOLDER,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
# Put model in evaluation mode
model.eval()
# ----------------------------------------------------------------
# 4) Define the generation function
# ----------------------------------------------------------------
def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
print("=== Starting generation ===")
# Move input tokens to the same device as model
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
try:
# Generate tokens
output_ids = model.generate(
**inputs,
max_new_tokens=max_length, # This controls how many tokens beyond the prompt are generated
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
print("=== Generation complete ===")
except Exception as e:
print(f"Error during generation: {e}")
return str(e)
# Decode back to text (skipping special tokens)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
# ----------------------------------------------------------------
# 5) Build a Gradio UI
# ----------------------------------------------------------------
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(
lines=4,
label="Prompt",
placeholder="Try a short prompt, e.g., Hello!"
),
gr.Slider(8, 512, value=64, step=1, label="Max New Tokens"),
gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p"),
],
outputs="text",
title="DeepSeek R1 Demo",
description="Generates text using the large DeepSeek model."
)
# ----------------------------------------------------------------
# 6) Run the Gradio app
# ----------------------------------------------------------------
if __name__ == "__main__":
demo.launch()