import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM # ---------------------------------------------------------------- # 1) Points to your Hugging Face repo and subfolder # (where config.json, tokenizer.json, model safetensors, etc. reside). # ---------------------------------------------------------------- MODEL_REPO = "wuhp/myr1" SUBFOLDER = "myr1" # ---------------------------------------------------------------- # 2) Load the tokenizer # trust_remote_code=True allows custom code (e.g., DeepSeek config/classes). # ---------------------------------------------------------------- tokenizer = AutoTokenizer.from_pretrained( MODEL_REPO, subfolder=SUBFOLDER, trust_remote_code=True ) # ---------------------------------------------------------------- # 3) Load the model # - device_map="auto" tries to place layers on GPU and offload remainder to CPU if needed # - torch_dtype can be float16, float32, bfloat16, etc., depending on GPU support # ---------------------------------------------------------------- model = AutoModelForCausalLM.from_pretrained( MODEL_REPO, subfolder=SUBFOLDER, trust_remote_code=True, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True ) # Put model in evaluation mode model.eval() # ---------------------------------------------------------------- # 4) Define the generation function # ---------------------------------------------------------------- def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9): print("=== Starting generation ===") # Move input tokens to the same device as model inputs = tokenizer(prompt, return_tensors="pt").to(model.device) try: # Generate tokens output_ids = model.generate( **inputs, max_new_tokens=max_length, # This controls how many tokens beyond the prompt are generated temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id ) print("=== Generation complete ===") except Exception as e: print(f"Error during generation: {e}") return str(e) # Decode back to text (skipping special tokens) return tokenizer.decode(output_ids[0], skip_special_tokens=True) # ---------------------------------------------------------------- # 5) Build a Gradio UI # ---------------------------------------------------------------- demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox( lines=4, label="Prompt", placeholder="Try a short prompt, e.g., Hello!" ), gr.Slider(8, 512, value=64, step=1, label="Max New Tokens"), gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p"), ], outputs="text", title="DeepSeek R1 Demo", description="Generates text using the large DeepSeek model." ) # ---------------------------------------------------------------- # 6) Run the Gradio app # ---------------------------------------------------------------- if __name__ == "__main__": demo.launch()