Update app.py
Browse files
app.py
CHANGED
@@ -2,34 +2,53 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
|
|
|
|
|
|
|
|
5 |
MODEL_REPO = "wuhp/myr1"
|
6 |
SUBFOLDER = "myr1"
|
7 |
|
|
|
|
|
|
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
MODEL_REPO,
|
10 |
subfolder=SUBFOLDER,
|
11 |
trust_remote_code=True
|
12 |
)
|
13 |
|
14 |
-
#
|
|
|
|
|
|
|
|
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
MODEL_REPO,
|
17 |
subfolder=SUBFOLDER,
|
18 |
trust_remote_code=True,
|
19 |
-
device_map="auto",
|
20 |
-
torch_dtype=torch.float16,
|
21 |
low_cpu_mem_usage=True
|
22 |
)
|
23 |
|
|
|
24 |
model.eval()
|
25 |
|
|
|
|
|
|
|
26 |
def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
|
27 |
print("=== Starting generation ===")
|
|
|
28 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
29 |
try:
|
|
|
30 |
output_ids = model.generate(
|
31 |
**inputs,
|
32 |
-
max_new_tokens=max_length,
|
33 |
temperature=temperature,
|
34 |
top_p=top_p,
|
35 |
do_sample=True,
|
@@ -39,8 +58,13 @@ def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
|
|
39 |
except Exception as e:
|
40 |
print(f"Error during generation: {e}")
|
41 |
return str(e)
|
|
|
|
|
42 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
43 |
|
|
|
|
|
|
|
44 |
demo = gr.Interface(
|
45 |
fn=generate_text,
|
46 |
inputs=[
|
@@ -58,5 +82,8 @@ demo = gr.Interface(
|
|
58 |
description="Generates text using the large DeepSeek model."
|
59 |
)
|
60 |
|
|
|
|
|
|
|
61 |
if __name__ == "__main__":
|
62 |
demo.launch()
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
# ----------------------------------------------------------------
|
6 |
+
# 1) Points to your Hugging Face repo and subfolder
|
7 |
+
# (where config.json, tokenizer.json, model safetensors, etc. reside).
|
8 |
+
# ----------------------------------------------------------------
|
9 |
MODEL_REPO = "wuhp/myr1"
|
10 |
SUBFOLDER = "myr1"
|
11 |
|
12 |
+
# ----------------------------------------------------------------
|
13 |
+
# 2) Load the tokenizer
|
14 |
+
# trust_remote_code=True allows custom code (e.g., DeepSeek config/classes).
|
15 |
+
# ----------------------------------------------------------------
|
16 |
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
MODEL_REPO,
|
18 |
subfolder=SUBFOLDER,
|
19 |
trust_remote_code=True
|
20 |
)
|
21 |
|
22 |
+
# ----------------------------------------------------------------
|
23 |
+
# 3) Load the model
|
24 |
+
# - device_map="auto" tries to place layers on GPU and offload remainder to CPU if needed
|
25 |
+
# - torch_dtype can be float16, float32, bfloat16, etc., depending on GPU support
|
26 |
+
# ----------------------------------------------------------------
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
MODEL_REPO,
|
29 |
subfolder=SUBFOLDER,
|
30 |
trust_remote_code=True,
|
31 |
+
device_map="auto",
|
32 |
+
torch_dtype=torch.float16,
|
33 |
low_cpu_mem_usage=True
|
34 |
)
|
35 |
|
36 |
+
# Put model in evaluation mode
|
37 |
model.eval()
|
38 |
|
39 |
+
# ----------------------------------------------------------------
|
40 |
+
# 4) Define the generation function
|
41 |
+
# ----------------------------------------------------------------
|
42 |
def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
|
43 |
print("=== Starting generation ===")
|
44 |
+
# Move input tokens to the same device as model
|
45 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
46 |
+
|
47 |
try:
|
48 |
+
# Generate tokens
|
49 |
output_ids = model.generate(
|
50 |
**inputs,
|
51 |
+
max_new_tokens=max_length, # This controls how many tokens beyond the prompt are generated
|
52 |
temperature=temperature,
|
53 |
top_p=top_p,
|
54 |
do_sample=True,
|
|
|
58 |
except Exception as e:
|
59 |
print(f"Error during generation: {e}")
|
60 |
return str(e)
|
61 |
+
|
62 |
+
# Decode back to text (skipping special tokens)
|
63 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
64 |
|
65 |
+
# ----------------------------------------------------------------
|
66 |
+
# 5) Build a Gradio UI
|
67 |
+
# ----------------------------------------------------------------
|
68 |
demo = gr.Interface(
|
69 |
fn=generate_text,
|
70 |
inputs=[
|
|
|
82 |
description="Generates text using the large DeepSeek model."
|
83 |
)
|
84 |
|
85 |
+
# ----------------------------------------------------------------
|
86 |
+
# 6) Run the Gradio app
|
87 |
+
# ----------------------------------------------------------------
|
88 |
if __name__ == "__main__":
|
89 |
demo.launch()
|