Update app.py
Browse files
app.py
CHANGED
@@ -2,80 +2,60 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
-
# ---------------------------------------------------------
|
6 |
-
# 1) Points to your Hugging Face repo and subfolder:
|
7 |
-
# "wuhp/myr1" is the repository
|
8 |
-
# "myr1" is the subfolder where the config/tokenizer/model are located.
|
9 |
-
# ---------------------------------------------------------
|
10 |
MODEL_REPO = "wuhp/myr1"
|
11 |
SUBFOLDER = "myr1"
|
12 |
|
13 |
-
# ---------------------------------------------------------
|
14 |
-
# 2) Load the tokenizer and model from the Hub
|
15 |
-
# - trust_remote_code=True allows custom config & modeling files.
|
16 |
-
# ---------------------------------------------------------
|
17 |
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
MODEL_REPO,
|
19 |
-
subfolder=SUBFOLDER,
|
20 |
trust_remote_code=True
|
21 |
)
|
22 |
|
|
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
MODEL_REPO,
|
25 |
-
subfolder=SUBFOLDER,
|
26 |
trust_remote_code=True,
|
27 |
-
device_map="auto", #
|
28 |
-
torch_dtype=torch.float16, # or
|
29 |
low_cpu_mem_usage=True
|
30 |
)
|
31 |
|
32 |
-
# Put the model in evaluation mode
|
33 |
model.eval()
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
"""
|
38 |
-
Generate text from your DeepSeekR1 model, given an input prompt.
|
39 |
-
"""
|
40 |
-
# Convert to token IDs and move to model device (GPU/CPU)
|
41 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
42 |
-
|
43 |
-
# Generate output
|
44 |
-
with torch.no_grad():
|
45 |
output_ids = model.generate(
|
46 |
**inputs,
|
47 |
-
|
48 |
temperature=temperature,
|
49 |
top_p=top_p,
|
50 |
do_sample=True,
|
51 |
-
pad_token_id=tokenizer.eos_token_id
|
52 |
)
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
56 |
|
57 |
-
|
58 |
-
# ---------------------------------------------------------
|
59 |
-
# 3) Build Gradio UI
|
60 |
-
# ---------------------------------------------------------
|
61 |
demo = gr.Interface(
|
62 |
fn=generate_text,
|
63 |
inputs=[
|
64 |
gr.Textbox(
|
65 |
-
lines=
|
66 |
-
label="
|
67 |
-
placeholder="
|
68 |
),
|
69 |
-
gr.Slider(
|
70 |
-
gr.Slider(0.0, 1.5,
|
71 |
-
gr.Slider(0.0, 1.0,
|
72 |
],
|
73 |
outputs="text",
|
74 |
-
title="DeepSeek
|
75 |
-
description=
|
76 |
-
"This Gradio interface loads the DeepSeek model from Hugging Face and lets you "
|
77 |
-
"generate text by entering a prompt. Adjust parameters to see how output changes."
|
78 |
-
)
|
79 |
)
|
80 |
|
81 |
if __name__ == "__main__":
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
MODEL_REPO = "wuhp/myr1"
|
6 |
SUBFOLDER = "myr1"
|
7 |
|
|
|
|
|
|
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
MODEL_REPO,
|
10 |
+
subfolder=SUBFOLDER,
|
11 |
trust_remote_code=True
|
12 |
)
|
13 |
|
14 |
+
# If your GPU has <24GB VRAM, consider 8-bit or CPU offloading
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
MODEL_REPO,
|
17 |
+
subfolder=SUBFOLDER,
|
18 |
trust_remote_code=True,
|
19 |
+
device_map="auto", # tries to place layers on GPU, then CPU if needed
|
20 |
+
torch_dtype=torch.float16, # or bfloat16 or float32
|
21 |
low_cpu_mem_usage=True
|
22 |
)
|
23 |
|
|
|
24 |
model.eval()
|
25 |
|
26 |
+
def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
|
27 |
+
print("=== Starting generation ===")
|
|
|
|
|
|
|
|
|
28 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
29 |
+
try:
|
|
|
|
|
30 |
output_ids = model.generate(
|
31 |
**inputs,
|
32 |
+
max_new_tokens=max_length, # alternative to max_length
|
33 |
temperature=temperature,
|
34 |
top_p=top_p,
|
35 |
do_sample=True,
|
36 |
+
pad_token_id=tokenizer.eos_token_id
|
37 |
)
|
38 |
+
print("=== Generation complete ===")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error during generation: {e}")
|
41 |
+
return str(e)
|
42 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
43 |
|
|
|
|
|
|
|
|
|
44 |
demo = gr.Interface(
|
45 |
fn=generate_text,
|
46 |
inputs=[
|
47 |
gr.Textbox(
|
48 |
+
lines=4,
|
49 |
+
label="Prompt",
|
50 |
+
placeholder="Try a short prompt, e.g., Hello!"
|
51 |
),
|
52 |
+
gr.Slider(8, 512, value=64, step=1, label="Max New Tokens"),
|
53 |
+
gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature"),
|
54 |
+
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p"),
|
55 |
],
|
56 |
outputs="text",
|
57 |
+
title="DeepSeek R1 Demo",
|
58 |
+
description="Generates text using the large DeepSeek model."
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|