myr1-2 / app.py
wuhp's picture
Update app.py
5a9af80 verified
raw
history blame
1.87 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
MODEL_REPO = "wuhp/myr1"
SUBFOLDER = "myr1"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_REPO,
subfolder=SUBFOLDER,
trust_remote_code=True
)
# If your GPU has <24GB VRAM, consider 8-bit or CPU offloading
model = AutoModelForCausalLM.from_pretrained(
MODEL_REPO,
subfolder=SUBFOLDER,
trust_remote_code=True,
device_map="auto", # tries to place layers on GPU, then CPU if needed
torch_dtype=torch.float16, # or bfloat16 or float32
low_cpu_mem_usage=True
)
model.eval()
def generate_text(prompt, max_length=64, temperature=0.7, top_p=0.9):
print("=== Starting generation ===")
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
try:
output_ids = model.generate(
**inputs,
max_new_tokens=max_length, # alternative to max_length
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
print("=== Generation complete ===")
except Exception as e:
print(f"Error during generation: {e}")
return str(e)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(
lines=4,
label="Prompt",
placeholder="Try a short prompt, e.g., Hello!"
),
gr.Slider(8, 512, value=64, step=1, label="Max New Tokens"),
gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p"),
],
outputs="text",
title="DeepSeek R1 Demo",
description="Generates text using the large DeepSeek model."
)
if __name__ == "__main__":
demo.launch()