File size: 7,635 Bytes
eccd8f6 2c4c7b5 eccd8f6 2c4c7b5 eccd8f6 2c4c7b5 eccd8f6 2c4c7b5 eccd8f6 2c4c7b5 eccd8f6 2c4c7b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import torch
from torch.utils.data import Dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
Trainer,
TrainingArguments,
GenerationConfig,
pipeline
)
import gradio as gr
# ---------------------------
# A) Dummy training dataset
# ---------------------------
class MyTextDataset(Dataset):
"""
Very simple dataset example. In reality:
- Use real text data,
- Possibly use HF 'datasets' library,
- Tokenize in chunks, etc.
"""
def __init__(self, tokenizer, texts, block_size=128):
self.examples = []
for txt in texts:
# Tokenize each text
tokens = tokenizer(txt, truncation=True, max_length=block_size)
self.examples.append(tokens["input_ids"])
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
return torch.tensor(self.examples[idx], dtype=torch.long)
# ---------------------------
# B) Training routine
# ---------------------------
def train_model(
model_name_or_path="wuhp/myr1",
subfolder="myr1",
output_dir="finetuned_myr1",
epochs=1
):
"""
Demonstrates how to load your custom model from HF, and run a
quick 'Trainer' to finetune it on some mock texts.
- model_name_or_path: huggingface repo ID (or local folder).
- subfolder: if your model config/weights live in a subfolder
within that repo, specify it here.
- output_dir: where to save final trained model.
- epochs: how many epochs for this mock training example.
"""
# 1) Load config (trust_remote_code=True so we can import custom .py from your repo)
config = AutoConfig.from_pretrained(
model_name_or_path,
subfolder=subfolder,
trust_remote_code=True
)
# 2) Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
subfolder=subfolder,
trust_remote_code=True
)
# 3) Load model
# AutoModelForCausalLM will detect your custom architecture from modeling_deepseek.py
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
subfolder=subfolder,
config=config,
torch_dtype=torch.float16, # or "auto", or float32
device_map="auto", # If you have enough GPU memory, or "cpu"
trust_remote_code=True
)
# 4) Create a tiny training dataset
train_texts = [
"Hello from DeepSeek!",
"The sky is blue.",
"Large language models can do amazing things."
]
eval_texts = [
"Testing is essential for robust code.",
"Generative AI is fun."
]
train_dataset = MyTextDataset(tokenizer, train_texts)
eval_dataset = MyTextDataset(tokenizer, eval_texts)
# 5) Trainer hyperparams
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=epochs,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_steps=1,
gradient_accumulation_steps=1,
fp16=True if torch.cuda.is_available() else False,
# If you have limited VRAM and can't do FP16, set fp16=False above
)
# 6) Define data collator for causal LM. Typically:
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
# 7) Build trainer
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset
)
# 8) Train
trainer.train()
# 9) Save model & tokenizer
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
return trainer
# ---------------------------
# C) Gradio app function
# ---------------------------
def create_gradio_demo(
model_name_or_path="finetuned_myr1",
generation_config_path=None
):
"""
Loads a (fine-tuned) model from local or HF, sets up
a text-generation pipeline, and returns a Gradio interface.
"""
# 1) Load config
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
# 2) Load model & tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True
)
# 3) (Optional) load generation config if present
# e.g. custom top_k, top_p, temperature, etc.
# If your repo has "generation_config.json" in subfolder="myr1",
# you could also do:
# GenerationConfig.from_pretrained("wuhp/myr1", subfolder="myr1", ...)
# Or from local path if downloaded.
if generation_config_path:
gen_config = GenerationConfig.from_json_file(generation_config_path)
else:
# fallback to default or config
gen_config = GenerationConfig.from_model_config(config)
# 4) Build a text-generation pipeline
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
generation_config=gen_config,
)
# 5) Define Gradio predict function
def predict(prompt, max_new_tokens=64, temperature=0.7, top_p=0.95):
"""
Generates text from the model given a user prompt.
"""
outputs = text_pipeline(
prompt,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p)
)
# The pipeline returns a list of dicts like [{'generated_text': '...'}]
return outputs[0]["generated_text"]
# 6) Create the Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## DeepSeek LLM Demo")
prompt = gr.Textbox(label="Enter your prompt:")
max_new_tokens = gr.Slider(1, 512, step=1, value=64, label="Max New Tokens")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.95, label="Top-p")
output = gr.Textbox(label="Generated Text")
generate_btn = gr.Button("Generate")
generate_btn.click(
fn=predict,
inputs=[prompt, max_new_tokens, temperature, top_p],
outputs=output
)
return demo
# ---------------------------
# D) Main: train + launch
# ---------------------------
if __name__ == "__main__":
# 1) TRAIN (mock demonstration).
# If you just want to *load* your existing model, skip this step.
print("Starting mock training on wuhp/myr1 (subfolder myr1)...")
trainer = train_model(
model_name_or_path="wuhp/myr1",
subfolder="myr1",
output_dir="finetuned_myr1",
epochs=1
)
print("Training complete.")
# 2) Build Gradio app from the newly saved model in 'finetuned_myr1'
# If you want to load the original (un-finetuned) weights, just pass
# model_name_or_path="wuhp/myr1" and subfolder="myr1" again.
demo = create_gradio_demo(
model_name_or_path="finetuned_myr1",
generation_config_path=None # or "finetuned_myr1/generation_config.json"
)
# 3) Launch
print("Launching Gradio demo on http://127.0.0.1:7860 ...")
demo.launch()
|