File size: 7,635 Bytes
eccd8f6
 
 
 
 
 
 
 
 
 
 
2c4c7b5
eccd8f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c7b5
eccd8f6
 
 
 
 
 
 
 
2c4c7b5
eccd8f6
 
2c4c7b5
eccd8f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c7b5
eccd8f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4c7b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import torch
from torch.utils.data import Dataset
from transformers import (
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    GenerationConfig,
    pipeline
)
import gradio as gr


# ---------------------------
# A) Dummy training dataset
# ---------------------------
class MyTextDataset(Dataset):
    """
    Very simple dataset example. In reality:
      - Use real text data,
      - Possibly use HF 'datasets' library,
      - Tokenize in chunks, etc.
    """
    def __init__(self, tokenizer, texts, block_size=128):
        self.examples = []
        for txt in texts:
            # Tokenize each text
            tokens = tokenizer(txt, truncation=True, max_length=block_size)
            self.examples.append(tokens["input_ids"])

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, idx):
        return torch.tensor(self.examples[idx], dtype=torch.long)


# ---------------------------
# B) Training routine
# ---------------------------
def train_model(
    model_name_or_path="wuhp/myr1",
    subfolder="myr1",
    output_dir="finetuned_myr1",
    epochs=1
):
    """
    Demonstrates how to load your custom model from HF, and run a
    quick 'Trainer' to finetune it on some mock texts.
    
    - model_name_or_path: huggingface repo ID (or local folder).
    - subfolder: if your model config/weights live in a subfolder
                 within that repo, specify it here.
    - output_dir: where to save final trained model.
    - epochs: how many epochs for this mock training example.
    """

    # 1) Load config (trust_remote_code=True so we can import custom .py from your repo)
    config = AutoConfig.from_pretrained(
        model_name_or_path,
        subfolder=subfolder,
        trust_remote_code=True
    )

    # 2) Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        model_name_or_path,
        subfolder=subfolder,
        trust_remote_code=True
    )

    # 3) Load model
    #    AutoModelForCausalLM will detect your custom architecture from modeling_deepseek.py
    model = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        subfolder=subfolder,
        config=config,
        torch_dtype=torch.float16,       # or "auto", or float32
        device_map="auto",               # If you have enough GPU memory, or "cpu"
        trust_remote_code=True
    )

    # 4) Create a tiny training dataset
    train_texts = [
        "Hello from DeepSeek!",
        "The sky is blue.",
        "Large language models can do amazing things."
    ]
    eval_texts = [
        "Testing is essential for robust code.",
        "Generative AI is fun."
    ]
    train_dataset = MyTextDataset(tokenizer, train_texts)
    eval_dataset  = MyTextDataset(tokenizer, eval_texts)

    # 5) Trainer hyperparams
    training_args = TrainingArguments(
        output_dir=output_dir,
        overwrite_output_dir=True,
        num_train_epochs=epochs,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        evaluation_strategy="epoch",
        save_strategy="epoch",
        logging_steps=1,
        gradient_accumulation_steps=1,
        fp16=True if torch.cuda.is_available() else False,
        # If you have limited VRAM and can't do FP16, set fp16=False above
    )

    # 6) Define data collator for causal LM. Typically:
    from transformers import DataCollatorForLanguageModeling
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=False
    )

    # 7) Build trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset
    )

    # 8) Train
    trainer.train()

    # 9) Save model & tokenizer
    trainer.save_model(output_dir)
    tokenizer.save_pretrained(output_dir)

    return trainer


# ---------------------------
# C) Gradio app function
# ---------------------------
def create_gradio_demo(
    model_name_or_path="finetuned_myr1",
    generation_config_path=None
):
    """
    Loads a (fine-tuned) model from local or HF, sets up
    a text-generation pipeline, and returns a Gradio interface.
    """

    # 1) Load config
    config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)

    # 2) Load model & tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        config=config,
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        device_map="auto",
        trust_remote_code=True
    )

    # 3) (Optional) load generation config if present
    #    e.g. custom top_k, top_p, temperature, etc.
    #    If your repo has "generation_config.json" in subfolder="myr1",
    #    you could also do:
    #       GenerationConfig.from_pretrained("wuhp/myr1", subfolder="myr1", ...)
    #    Or from local path if downloaded.
    if generation_config_path:
        gen_config = GenerationConfig.from_json_file(generation_config_path)
    else:
        # fallback to default or config
        gen_config = GenerationConfig.from_model_config(config)

    # 4) Build a text-generation pipeline
    text_pipeline = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        generation_config=gen_config,
    )

    # 5) Define Gradio predict function
    def predict(prompt, max_new_tokens=64, temperature=0.7, top_p=0.95):
        """
        Generates text from the model given a user prompt.
        """
        outputs = text_pipeline(
            prompt,
            max_new_tokens=int(max_new_tokens),
            temperature=float(temperature),
            top_p=float(top_p)
        )
        # The pipeline returns a list of dicts like [{'generated_text': '...'}]
        return outputs[0]["generated_text"]

    # 6) Create the Gradio Interface
    with gr.Blocks() as demo:
        gr.Markdown("## DeepSeek LLM Demo")
        prompt = gr.Textbox(label="Enter your prompt:")
        max_new_tokens = gr.Slider(1, 512, step=1, value=64, label="Max New Tokens")
        temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
        top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.95, label="Top-p")
        output = gr.Textbox(label="Generated Text")

        generate_btn = gr.Button("Generate")
        generate_btn.click(
            fn=predict,
            inputs=[prompt, max_new_tokens, temperature, top_p],
            outputs=output
        )
    return demo


# ---------------------------
# D) Main: train + launch
# ---------------------------
if __name__ == "__main__":
    # 1) TRAIN (mock demonstration). 
    #    If you just want to *load* your existing model, skip this step.
    print("Starting mock training on wuhp/myr1 (subfolder myr1)...")
    trainer = train_model(
        model_name_or_path="wuhp/myr1",
        subfolder="myr1",
        output_dir="finetuned_myr1",
        epochs=1
    )
    print("Training complete.")

    # 2) Build Gradio app from the newly saved model in 'finetuned_myr1'
    #    If you want to load the original (un-finetuned) weights, just pass
    #    model_name_or_path="wuhp/myr1" and subfolder="myr1" again.
    demo = create_gradio_demo(
        model_name_or_path="finetuned_myr1", 
        generation_config_path=None  # or "finetuned_myr1/generation_config.json"
    )

    # 3) Launch
    print("Launching Gradio demo on http://127.0.0.1:7860 ...")
    demo.launch()