wuhp commited on
Commit
2c4c7b5
·
verified ·
1 Parent(s): e497a96

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+
5
+ # ---------------------------------------------------------
6
+ # 1) Points to your Hugging Face repo and subfolder:
7
+ # "wuhp/myr1" is the repository
8
+ # "myr1" is the subfolder where the config/tokenizer/model are located.
9
+ # ---------------------------------------------------------
10
+ MODEL_REPO = "wuhp/myr1"
11
+ SUBFOLDER = "myr1"
12
+
13
+ # ---------------------------------------------------------
14
+ # 2) Load the tokenizer and model from the Hub
15
+ # - trust_remote_code=True allows custom config & modeling files.
16
+ # ---------------------------------------------------------
17
+ tokenizer = AutoTokenizer.from_pretrained(
18
+ MODEL_REPO,
19
+ subfolder=SUBFOLDER, # important because the model files sit inside 'myr1'
20
+ trust_remote_code=True
21
+ )
22
+
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ MODEL_REPO,
25
+ subfolder=SUBFOLDER, # also needed here
26
+ trust_remote_code=True,
27
+ device_map="auto", # automatically place model layers on GPU(s) if available
28
+ torch_dtype=torch.float16, # or "auto", "float32", "bfloat16", etc. as your hardware supports
29
+ low_cpu_mem_usage=True
30
+ )
31
+
32
+ # Put the model in evaluation mode
33
+ model.eval()
34
+
35
+
36
+ def generate_text(prompt, max_length=128, temperature=0.7, top_p=0.9):
37
+ """
38
+ Generate text from your DeepSeekR1 model, given an input prompt.
39
+ """
40
+ # Convert to token IDs and move to model device (GPU/CPU)
41
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
42
+
43
+ # Generate output
44
+ with torch.no_grad():
45
+ output_ids = model.generate(
46
+ **inputs,
47
+ max_length=max_length,
48
+ temperature=temperature,
49
+ top_p=top_p,
50
+ do_sample=True,
51
+ pad_token_id=tokenizer.eos_token_id, # or set to a real pad_token_id if your model uses one
52
+ )
53
+
54
+ # Decode the tokens back into a string
55
+ return tokenizer.decode(output_ids[0], skip_special_tokens=True)
56
+
57
+
58
+ # ---------------------------------------------------------
59
+ # 3) Build Gradio UI
60
+ # ---------------------------------------------------------
61
+ demo = gr.Interface(
62
+ fn=generate_text,
63
+ inputs=[
64
+ gr.Textbox(
65
+ lines=5,
66
+ label="Enter your prompt",
67
+ placeholder="Type something for the DeepSeek model..."
68
+ ),
69
+ gr.Slider(64, 1024, step=1, value=128, label="Max Length"),
70
+ gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature"),
71
+ gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p"),
72
+ ],
73
+ outputs="text",
74
+ title="DeepSeek-R1 Gradio Demo",
75
+ description=(
76
+ "This Gradio interface loads the DeepSeek model from Hugging Face and lets you "
77
+ "generate text by entering a prompt. Adjust parameters to see how output changes."
78
+ )
79
+ )
80
+
81
+ if __name__ == "__main__":
82
+ demo.launch()