Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# ---------------------------------------------------------
|
6 |
+
# 1) Points to your Hugging Face repo and subfolder:
|
7 |
+
# "wuhp/myr1" is the repository
|
8 |
+
# "myr1" is the subfolder where the config/tokenizer/model are located.
|
9 |
+
# ---------------------------------------------------------
|
10 |
+
MODEL_REPO = "wuhp/myr1"
|
11 |
+
SUBFOLDER = "myr1"
|
12 |
+
|
13 |
+
# ---------------------------------------------------------
|
14 |
+
# 2) Load the tokenizer and model from the Hub
|
15 |
+
# - trust_remote_code=True allows custom config & modeling files.
|
16 |
+
# ---------------------------------------------------------
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
+
MODEL_REPO,
|
19 |
+
subfolder=SUBFOLDER, # important because the model files sit inside 'myr1'
|
20 |
+
trust_remote_code=True
|
21 |
+
)
|
22 |
+
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
MODEL_REPO,
|
25 |
+
subfolder=SUBFOLDER, # also needed here
|
26 |
+
trust_remote_code=True,
|
27 |
+
device_map="auto", # automatically place model layers on GPU(s) if available
|
28 |
+
torch_dtype=torch.float16, # or "auto", "float32", "bfloat16", etc. as your hardware supports
|
29 |
+
low_cpu_mem_usage=True
|
30 |
+
)
|
31 |
+
|
32 |
+
# Put the model in evaluation mode
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
|
36 |
+
def generate_text(prompt, max_length=128, temperature=0.7, top_p=0.9):
|
37 |
+
"""
|
38 |
+
Generate text from your DeepSeekR1 model, given an input prompt.
|
39 |
+
"""
|
40 |
+
# Convert to token IDs and move to model device (GPU/CPU)
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
42 |
+
|
43 |
+
# Generate output
|
44 |
+
with torch.no_grad():
|
45 |
+
output_ids = model.generate(
|
46 |
+
**inputs,
|
47 |
+
max_length=max_length,
|
48 |
+
temperature=temperature,
|
49 |
+
top_p=top_p,
|
50 |
+
do_sample=True,
|
51 |
+
pad_token_id=tokenizer.eos_token_id, # or set to a real pad_token_id if your model uses one
|
52 |
+
)
|
53 |
+
|
54 |
+
# Decode the tokens back into a string
|
55 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
56 |
+
|
57 |
+
|
58 |
+
# ---------------------------------------------------------
|
59 |
+
# 3) Build Gradio UI
|
60 |
+
# ---------------------------------------------------------
|
61 |
+
demo = gr.Interface(
|
62 |
+
fn=generate_text,
|
63 |
+
inputs=[
|
64 |
+
gr.Textbox(
|
65 |
+
lines=5,
|
66 |
+
label="Enter your prompt",
|
67 |
+
placeholder="Type something for the DeepSeek model..."
|
68 |
+
),
|
69 |
+
gr.Slider(64, 1024, step=1, value=128, label="Max Length"),
|
70 |
+
gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature"),
|
71 |
+
gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p"),
|
72 |
+
],
|
73 |
+
outputs="text",
|
74 |
+
title="DeepSeek-R1 Gradio Demo",
|
75 |
+
description=(
|
76 |
+
"This Gradio interface loads the DeepSeek model from Hugging Face and lets you "
|
77 |
+
"generate text by entering a prompt. Adjust parameters to see how output changes."
|
78 |
+
)
|
79 |
+
)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
demo.launch()
|