Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| from PIL import Image | |
| import subprocess | |
| from datetime import datetime | |
| import numpy as np | |
| import os | |
| # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| # models = { | |
| # "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
| # } | |
| def array_to_image_path(image_array): | |
| # Convert numpy array to PIL Image | |
| img = Image.fromarray(np.uint8(image_array)) | |
| img.thumbnail((1024, 1024)) | |
| # Generate a unique filename using timestamp | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| # Save the image | |
| img.save(filename) | |
| # Get the full path of the saved image | |
| full_path = os.path.abspath(filename) | |
| return full_path | |
| models = { | |
| "Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval() | |
| } | |
| processors = { | |
| "Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True) | |
| } | |
| DESCRIPTION = "This demo uses[Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)" | |
| kwargs = {} | |
| kwargs['torch_dtype'] = torch.bfloat16 | |
| user_prompt = '<|user|>\n' | |
| assistant_prompt = '<|assistant|>\n' | |
| prompt_suffix = "<|end|>\n" | |
| def run_example(image, model_id="Qwen/Qwen2-VL-7B-Instruct"): | |
| text_input = "Convert the image to text." | |
| image_path = array_to_image_path(image) | |
| print(image_path) | |
| model = models[model_id] | |
| processor = processors[model_id] | |
| prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
| image = Image.fromarray(image).convert("RGB") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image_path, | |
| }, | |
| {"type": "text", "text": text_input}, | |
| ], | |
| } | |
| ] | |
| # Preparation for inference | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Inference: Generation of the output | |
| generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] | |
| css = """ | |
| /* Overall app styling */ | |
| .gradio-container { | |
| max-width: 1200px !important; | |
| margin: 0 auto; | |
| padding: 20px; | |
| background-color: #f8f9fa; | |
| } | |
| /* Tabs styling */ | |
| .tabs { | |
| border-radius: 8px; | |
| background: white; | |
| padding: 20px; | |
| box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1); | |
| } | |
| /* Input/Output containers */ | |
| .input-container, .output-container { | |
| background: white; | |
| border-radius: 8px; | |
| padding: 15px; | |
| margin: 10px 0; | |
| box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); | |
| } | |
| /* Button styling */ | |
| .submit-btn { | |
| background-color: #2d31fa !important; | |
| border: none !important; | |
| padding: 8px 20px !important; | |
| border-radius: 6px !important; | |
| color: white !important; | |
| transition: all 0.3s ease !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #1f24c7 !important; | |
| transform: translateY(-1px); | |
| } | |
| /* Output text area */ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #e0e0e0; | |
| border-radius: 6px; | |
| padding: 15px; | |
| background: #ffffff; | |
| font-family: 'Arial', sans-serif; | |
| } | |
| /* Dropdown styling */ | |
| .gr-dropdown { | |
| border-radius: 6px !important; | |
| border: 1px solid #e0e0e0 !important; | |
| } | |
| /* Image upload area */ | |
| .gr-image-input { | |
| border: 2px dashed #ccc; | |
| border-radius: 8px; | |
| padding: 20px; | |
| transition: all 0.3s ease; | |
| } | |
| .gr-image-input:hover { | |
| border-color: #2d31fa; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Image("Caracal.jpg", interactive=False) | |
| with gr.Tab(label="Image Input", elem_classes="tabs"): | |
| with gr.Row(): | |
| with gr.Column(elem_classes="input-container"): | |
| input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input") | |
| model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct", elem_classes="gr-dropdown") | |
| submit_btn = gr.Button(value="Submit", elem_classes="submit-btn") | |
| with gr.Column(elem_classes="output-container"): | |
| output_text = gr.Textbox(label="Output Text", elem_id="output") | |
| submit_btn.click(run_example, [input_img, model_selector], [output_text]) | |
| demo.queue(api_open=False) | |
| demo.launch(debug=True) |