File size: 5,406 Bytes
8858188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d956744
8858188
 
 
 
 
 
 
 
 
 
5674d41
8858188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5674d41
8858188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b14dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8858188
36b14dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8858188
 
 
 
71499d4
36b14dc
8858188
36b14dc
 
 
 
 
 
8858188
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
from datetime import datetime
import numpy as np
import os


# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# models = {
#     "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()

# }
def array_to_image_path(image_array):
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))
    img.thumbnail((1024, 1024))
    
    # Generate a unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    
    # Save the image
    img.save(filename)
    
    # Get the full path of the saved image
    full_path = os.path.abspath(filename)
    
    return full_path
    
models = {
    "Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()

}

processors = {
    "Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
}

DESCRIPTION = "This demo uses[Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)"

kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

@spaces.GPU
def run_example(image, model_id="Qwen/Qwen2-VL-7B-Instruct"):
    text_input = "Convert the image to text."
    image_path = array_to_image_path(image)
    
    print(image_path)
    model = models[model_id]
    processor = processors[model_id]

    prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
    image = Image.fromarray(image).convert("RGB")
    messages = [
    {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image_path,
                },
                {"type": "text", "text": text_input},
            ],
        }
    ]
    
    # Preparation for inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    
    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    
    return output_text[0]

css = """
  /* Overall app styling */
  .gradio-container {
    max-width: 1200px !important;
    margin: 0 auto;
    padding: 20px;
    background-color: #f8f9fa;
  }

  /* Tabs styling */
  .tabs {
    border-radius: 8px;
    background: white;
    padding: 20px;
    box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
  }

  /* Input/Output containers */
  .input-container, .output-container {
    background: white;
    border-radius: 8px;
    padding: 15px;
    margin: 10px 0;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
  }

  /* Button styling */
  .submit-btn {
    background-color: #2d31fa !important;
    border: none !important;
    padding: 8px 20px !important;
    border-radius: 6px !important;
    color: white !important;
    transition: all 0.3s ease !important;
  }
  
  .submit-btn:hover {
    background-color: #1f24c7 !important;
    transform: translateY(-1px);
  }

  /* Output text area */
  #output {
    height: 500px;
    overflow: auto;
    border: 1px solid #e0e0e0;
    border-radius: 6px;
    padding: 15px;
    background: #ffffff;
    font-family: 'Arial', sans-serif;
  }

  /* Dropdown styling */
  .gr-dropdown {
    border-radius: 6px !important;
    border: 1px solid #e0e0e0 !important;
  }

  /* Image upload area */
  .gr-image-input {
    border: 2px dashed #ccc;
    border-radius: 8px;
    padding: 20px;
    transition: all 0.3s ease;
  }

  .gr-image-input:hover {
    border-color: #2d31fa;
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Image("Caracal.jpg", interactive=False)
    with gr.Tab(label="Image Input", elem_classes="tabs"):
        with gr.Row():
            with gr.Column(elem_classes="input-container"):
                input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input")
                model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct", elem_classes="gr-dropdown")
                submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
            with gr.Column(elem_classes="output-container"):
                output_text = gr.Textbox(label="Output Text", elem_id="output")

        submit_btn.click(run_example, [input_img, model_selector], [output_text])

demo.queue(api_open=False)
demo.launch(debug=True)