Spaces:
Running
Running
import socket | |
import timeit | |
import numpy as np | |
from PIL import Image | |
from datetime import datetime | |
import os | |
import sys | |
import glob | |
from collections import OrderedDict | |
sys.path.append('../../') | |
# PyTorch includes | |
import torch | |
import pdb | |
from torch.autograd import Variable | |
import torch.optim as optim | |
from torchvision import transforms | |
from torch.utils.data import DataLoader | |
from torchvision.utils import make_grid | |
import cv2 | |
# Tensorboard include | |
# from tensorboardX import SummaryWriter | |
# Custom includes | |
from dataloaders import pascal | |
from utils import util | |
from networks import deeplab_xception_transfer, graph | |
from dataloaders import custom_transforms as tr | |
# | |
import argparse | |
import copy | |
import torch.nn.functional as F | |
from test_from_disk import eval_ | |
gpu_id = 1 | |
label_colours = [(0,0,0) | |
# 0=background | |
,(128,0,0), (0,128,0), (128,128,0), (0,0,128), (128,0,128), (0,128,128)] | |
def flip(x, dim): | |
indices = [slice(None)] * x.dim() | |
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, | |
dtype=torch.long, device=x.device) | |
return x[tuple(indices)] | |
# def flip_cihp(tail_list): | |
# ''' | |
# | |
# :param tail_list: tail_list size is 1 x n_class x h x w | |
# :return: | |
# ''' | |
# # tail_list = tail_list[0] | |
# tail_list_rev = [None] * 20 | |
# for xx in range(14): | |
# tail_list_rev[xx] = tail_list[xx].unsqueeze(0) | |
# tail_list_rev[14] = tail_list[15].unsqueeze(0) | |
# tail_list_rev[15] = tail_list[14].unsqueeze(0) | |
# tail_list_rev[16] = tail_list[17].unsqueeze(0) | |
# tail_list_rev[17] = tail_list[16].unsqueeze(0) | |
# tail_list_rev[18] = tail_list[19].unsqueeze(0) | |
# tail_list_rev[19] = tail_list[18].unsqueeze(0) | |
# return torch.cat(tail_list_rev,dim=0) | |
def decode_labels(mask, num_images=1, num_classes=20): | |
"""Decode batch of segmentation masks. | |
Args: | |
mask: result of inference after taking argmax. | |
num_images: number of images to decode from the batch. | |
num_classes: number of classes to predict (including background). | |
Returns: | |
A batch with num_images RGB images of the same size as the input. | |
""" | |
n, h, w = mask.shape | |
assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) | |
outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8) | |
for i in range(num_images): | |
img = Image.new('RGB', (len(mask[i, 0]), len(mask[i]))) | |
pixels = img.load() | |
for j_, j in enumerate(mask[i, :, :]): | |
for k_, k in enumerate(j): | |
if k < num_classes: | |
pixels[k_,j_] = label_colours[k] | |
outputs[i] = np.array(img) | |
return outputs | |
def get_parser(): | |
'''argparse begin''' | |
parser = argparse.ArgumentParser() | |
LookupChoices = type('', (argparse.Action,), dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v]))) | |
parser.add_argument('--epochs', default=100, type=int) | |
parser.add_argument('--batch', default=16, type=int) | |
parser.add_argument('--lr', default=1e-7, type=float) | |
parser.add_argument('--numworker', default=12, type=int) | |
parser.add_argument('--step', default=30, type=int) | |
# parser.add_argument('--loadmodel',default=None,type=str) | |
parser.add_argument('--classes', default=7, type=int) | |
parser.add_argument('--testepoch', default=10, type=int) | |
parser.add_argument('--loadmodel', default='', type=str) | |
parser.add_argument('--txt_file', default='', type=str) | |
parser.add_argument('--hidden_layers', default=128, type=int) | |
parser.add_argument('--gpus', default=4, type=int) | |
parser.add_argument('--output_path', default='./results/', type=str) | |
parser.add_argument('--gt_path', default='./results/', type=str) | |
opts = parser.parse_args() | |
return opts | |
def main(opts): | |
adj2_ = torch.from_numpy(graph.cihp2pascal_nlp_adj).float() | |
adj2_test = adj2_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 20).cuda() | |
adj1_ = Variable(torch.from_numpy(graph.preprocess_adj(graph.pascal_graph)).float()) | |
adj1_test = adj1_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 7).cuda() | |
cihp_adj = graph.preprocess_adj(graph.cihp_graph) | |
adj3_ = Variable(torch.from_numpy(cihp_adj).float()) | |
adj3_test = adj3_.unsqueeze(0).unsqueeze(0).expand(1, 1, 20, 20).cuda() | |
p = OrderedDict() # Parameters to include in report | |
p['trainBatch'] = opts.batch # Training batch size | |
p['nAveGrad'] = 1 # Average the gradient of several iterations | |
p['lr'] = opts.lr # Learning rate | |
p['lrFtr'] = 1e-5 | |
p['lraspp'] = 1e-5 | |
p['lrpro'] = 1e-5 | |
p['lrdecoder'] = 1e-5 | |
p['lrother'] = 1e-5 | |
p['wd'] = 5e-4 # Weight decay | |
p['momentum'] = 0.9 # Momentum | |
p['epoch_size'] = 10 # How many epochs to change learning rate | |
p['num_workers'] = opts.numworker | |
backbone = 'xception' # Use xception or resnet as feature extractor, | |
with open(opts.txt_file, 'r') as f: | |
img_list = f.readlines() | |
max_id = 0 | |
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__))) | |
exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] | |
runs = glob.glob(os.path.join(save_dir_root, 'run', 'run_*')) | |
for r in runs: | |
run_id = int(r.split('_')[-1]) | |
if run_id >= max_id: | |
max_id = run_id + 1 | |
# run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0 | |
# Network definition | |
if backbone == 'xception': | |
net = deeplab_xception_transfer.deeplab_xception_transfer_projection(n_classes=opts.classes, os=16, | |
hidden_layers=opts.hidden_layers, source_classes=20, | |
) | |
elif backbone == 'resnet': | |
# net = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=7, os=16, pretrained=True) | |
raise NotImplementedError | |
else: | |
raise NotImplementedError | |
if gpu_id >= 0: | |
net.cuda() | |
# net load weights | |
if not opts.loadmodel =='': | |
x = torch.load(opts.loadmodel) | |
net.load_source_model(x) | |
print('load model:' ,opts.loadmodel) | |
else: | |
print('no model load !!!!!!!!') | |
## multi scale | |
scale_list=[1,0.5,0.75,1.25,1.5,1.75] | |
testloader_list = [] | |
testloader_flip_list = [] | |
for pv in scale_list: | |
composed_transforms_ts = transforms.Compose([ | |
tr.Scale_(pv), | |
tr.Normalize_xception_tf(), | |
tr.ToTensor_()]) | |
composed_transforms_ts_flip = transforms.Compose([ | |
tr.Scale_(pv), | |
tr.HorizontalFlip(), | |
tr.Normalize_xception_tf(), | |
tr.ToTensor_()]) | |
voc_val = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts) | |
voc_val_f = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts_flip) | |
testloader = DataLoader(voc_val, batch_size=1, shuffle=False, num_workers=p['num_workers']) | |
testloader_flip = DataLoader(voc_val_f, batch_size=1, shuffle=False, num_workers=p['num_workers']) | |
testloader_list.append(copy.deepcopy(testloader)) | |
testloader_flip_list.append(copy.deepcopy(testloader_flip)) | |
print("Eval Network") | |
if not os.path.exists(opts.output_path + 'pascal_output_vis/'): | |
os.makedirs(opts.output_path + 'pascal_output_vis/') | |
if not os.path.exists(opts.output_path + 'pascal_output/'): | |
os.makedirs(opts.output_path + 'pascal_output/') | |
start_time = timeit.default_timer() | |
# One testing epoch | |
total_iou = 0.0 | |
net.eval() | |
for ii, large_sample_batched in enumerate(zip(*testloader_list, *testloader_flip_list)): | |
print(ii) | |
#1 0.5 0.75 1.25 1.5 1.75 ; flip: | |
sample1 = large_sample_batched[:6] | |
sample2 = large_sample_batched[6:] | |
for iii,sample_batched in enumerate(zip(sample1,sample2)): | |
inputs, labels = sample_batched[0]['image'], sample_batched[0]['label'] | |
inputs_f, _ = sample_batched[1]['image'], sample_batched[1]['label'] | |
inputs = torch.cat((inputs,inputs_f),dim=0) | |
if iii == 0: | |
_,_,h,w = inputs.size() | |
# assert inputs.size() == inputs_f.size() | |
# Forward pass of the mini-batch | |
inputs, labels = Variable(inputs, requires_grad=False), Variable(labels) | |
with torch.no_grad(): | |
if gpu_id >= 0: | |
inputs, labels = inputs.cuda(), labels.cuda() | |
# outputs = net.forward(inputs) | |
# pdb.set_trace() | |
outputs = net.forward(inputs, adj1_test.cuda(), adj3_test.cuda(), adj2_test.cuda()) | |
outputs = (outputs[0] + flip(outputs[1], dim=-1)) / 2 | |
outputs = outputs.unsqueeze(0) | |
if iii>0: | |
outputs = F.upsample(outputs,size=(h,w),mode='bilinear',align_corners=True) | |
outputs_final = outputs_final + outputs | |
else: | |
outputs_final = outputs.clone() | |
################ plot pic | |
predictions = torch.max(outputs_final, 1)[1] | |
prob_predictions = torch.max(outputs_final,1)[0] | |
results = predictions.cpu().numpy() | |
prob_results = prob_predictions.cpu().numpy() | |
vis_res = decode_labels(results) | |
parsing_im = Image.fromarray(vis_res[0]) | |
parsing_im.save(opts.output_path + 'pascal_output_vis/{}.png'.format(img_list[ii][:-1])) | |
cv2.imwrite(opts.output_path + 'pascal_output/{}.png'.format(img_list[ii][:-1]), results[0,:,:]) | |
# np.save('../../cihp_prob_output/{}.npy'.format(img_list[ii][:-1]), prob_results[0, :, :]) | |
# pred_list.append(predictions.cpu()) | |
# label_list.append(labels.squeeze(1).cpu()) | |
# loss = criterion(outputs, labels, batch_average=True) | |
# running_loss_ts += loss.item() | |
# total_iou += utils.get_iou(predictions, labels) | |
end_time = timeit.default_timer() | |
print('time use for '+str(ii) + ' is :' + str(end_time - start_time)) | |
# Eval | |
pred_path = opts.output_path + 'pascal_output/' | |
eval_(pred_path=pred_path, gt_path=opts.gt_path,classes=opts.classes, txt_file=opts.txt_file) | |
if __name__ == '__main__': | |
opts = get_parser() | |
main(opts) |