wizzseen's picture
Upload 948 files
8a6df40 verified
import socket
import timeit
import numpy as np
from PIL import Image
from datetime import datetime
import os
import sys
import glob
from collections import OrderedDict
sys.path.append('../../')
# PyTorch includes
import torch
import pdb
from torch.autograd import Variable
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
import cv2
# Tensorboard include
# from tensorboardX import SummaryWriter
# Custom includes
from dataloaders import pascal
from utils import util
from networks import deeplab_xception_transfer, graph
from dataloaders import custom_transforms as tr
#
import argparse
import copy
import torch.nn.functional as F
from test_from_disk import eval_
gpu_id = 1
label_colours = [(0,0,0)
# 0=background
,(128,0,0), (0,128,0), (128,128,0), (0,0,128), (128,0,128), (0,128,128)]
def flip(x, dim):
indices = [slice(None)] * x.dim()
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
dtype=torch.long, device=x.device)
return x[tuple(indices)]
# def flip_cihp(tail_list):
# '''
#
# :param tail_list: tail_list size is 1 x n_class x h x w
# :return:
# '''
# # tail_list = tail_list[0]
# tail_list_rev = [None] * 20
# for xx in range(14):
# tail_list_rev[xx] = tail_list[xx].unsqueeze(0)
# tail_list_rev[14] = tail_list[15].unsqueeze(0)
# tail_list_rev[15] = tail_list[14].unsqueeze(0)
# tail_list_rev[16] = tail_list[17].unsqueeze(0)
# tail_list_rev[17] = tail_list[16].unsqueeze(0)
# tail_list_rev[18] = tail_list[19].unsqueeze(0)
# tail_list_rev[19] = tail_list[18].unsqueeze(0)
# return torch.cat(tail_list_rev,dim=0)
def decode_labels(mask, num_images=1, num_classes=20):
"""Decode batch of segmentation masks.
Args:
mask: result of inference after taking argmax.
num_images: number of images to decode from the batch.
num_classes: number of classes to predict (including background).
Returns:
A batch with num_images RGB images of the same size as the input.
"""
n, h, w = mask.shape
assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images)
outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8)
for i in range(num_images):
img = Image.new('RGB', (len(mask[i, 0]), len(mask[i])))
pixels = img.load()
for j_, j in enumerate(mask[i, :, :]):
for k_, k in enumerate(j):
if k < num_classes:
pixels[k_,j_] = label_colours[k]
outputs[i] = np.array(img)
return outputs
def get_parser():
'''argparse begin'''
parser = argparse.ArgumentParser()
LookupChoices = type('', (argparse.Action,), dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--batch', default=16, type=int)
parser.add_argument('--lr', default=1e-7, type=float)
parser.add_argument('--numworker', default=12, type=int)
parser.add_argument('--step', default=30, type=int)
# parser.add_argument('--loadmodel',default=None,type=str)
parser.add_argument('--classes', default=7, type=int)
parser.add_argument('--testepoch', default=10, type=int)
parser.add_argument('--loadmodel', default='', type=str)
parser.add_argument('--txt_file', default='', type=str)
parser.add_argument('--hidden_layers', default=128, type=int)
parser.add_argument('--gpus', default=4, type=int)
parser.add_argument('--output_path', default='./results/', type=str)
parser.add_argument('--gt_path', default='./results/', type=str)
opts = parser.parse_args()
return opts
def main(opts):
adj2_ = torch.from_numpy(graph.cihp2pascal_nlp_adj).float()
adj2_test = adj2_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 20).cuda()
adj1_ = Variable(torch.from_numpy(graph.preprocess_adj(graph.pascal_graph)).float())
adj1_test = adj1_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 7).cuda()
cihp_adj = graph.preprocess_adj(graph.cihp_graph)
adj3_ = Variable(torch.from_numpy(cihp_adj).float())
adj3_test = adj3_.unsqueeze(0).unsqueeze(0).expand(1, 1, 20, 20).cuda()
p = OrderedDict() # Parameters to include in report
p['trainBatch'] = opts.batch # Training batch size
p['nAveGrad'] = 1 # Average the gradient of several iterations
p['lr'] = opts.lr # Learning rate
p['lrFtr'] = 1e-5
p['lraspp'] = 1e-5
p['lrpro'] = 1e-5
p['lrdecoder'] = 1e-5
p['lrother'] = 1e-5
p['wd'] = 5e-4 # Weight decay
p['momentum'] = 0.9 # Momentum
p['epoch_size'] = 10 # How many epochs to change learning rate
p['num_workers'] = opts.numworker
backbone = 'xception' # Use xception or resnet as feature extractor,
with open(opts.txt_file, 'r') as f:
img_list = f.readlines()
max_id = 0
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
runs = glob.glob(os.path.join(save_dir_root, 'run', 'run_*'))
for r in runs:
run_id = int(r.split('_')[-1])
if run_id >= max_id:
max_id = run_id + 1
# run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0
# Network definition
if backbone == 'xception':
net = deeplab_xception_transfer.deeplab_xception_transfer_projection(n_classes=opts.classes, os=16,
hidden_layers=opts.hidden_layers, source_classes=20,
)
elif backbone == 'resnet':
# net = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=7, os=16, pretrained=True)
raise NotImplementedError
else:
raise NotImplementedError
if gpu_id >= 0:
net.cuda()
# net load weights
if not opts.loadmodel =='':
x = torch.load(opts.loadmodel)
net.load_source_model(x)
print('load model:' ,opts.loadmodel)
else:
print('no model load !!!!!!!!')
## multi scale
scale_list=[1,0.5,0.75,1.25,1.5,1.75]
testloader_list = []
testloader_flip_list = []
for pv in scale_list:
composed_transforms_ts = transforms.Compose([
tr.Scale_(pv),
tr.Normalize_xception_tf(),
tr.ToTensor_()])
composed_transforms_ts_flip = transforms.Compose([
tr.Scale_(pv),
tr.HorizontalFlip(),
tr.Normalize_xception_tf(),
tr.ToTensor_()])
voc_val = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts)
voc_val_f = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts_flip)
testloader = DataLoader(voc_val, batch_size=1, shuffle=False, num_workers=p['num_workers'])
testloader_flip = DataLoader(voc_val_f, batch_size=1, shuffle=False, num_workers=p['num_workers'])
testloader_list.append(copy.deepcopy(testloader))
testloader_flip_list.append(copy.deepcopy(testloader_flip))
print("Eval Network")
if not os.path.exists(opts.output_path + 'pascal_output_vis/'):
os.makedirs(opts.output_path + 'pascal_output_vis/')
if not os.path.exists(opts.output_path + 'pascal_output/'):
os.makedirs(opts.output_path + 'pascal_output/')
start_time = timeit.default_timer()
# One testing epoch
total_iou = 0.0
net.eval()
for ii, large_sample_batched in enumerate(zip(*testloader_list, *testloader_flip_list)):
print(ii)
#1 0.5 0.75 1.25 1.5 1.75 ; flip:
sample1 = large_sample_batched[:6]
sample2 = large_sample_batched[6:]
for iii,sample_batched in enumerate(zip(sample1,sample2)):
inputs, labels = sample_batched[0]['image'], sample_batched[0]['label']
inputs_f, _ = sample_batched[1]['image'], sample_batched[1]['label']
inputs = torch.cat((inputs,inputs_f),dim=0)
if iii == 0:
_,_,h,w = inputs.size()
# assert inputs.size() == inputs_f.size()
# Forward pass of the mini-batch
inputs, labels = Variable(inputs, requires_grad=False), Variable(labels)
with torch.no_grad():
if gpu_id >= 0:
inputs, labels = inputs.cuda(), labels.cuda()
# outputs = net.forward(inputs)
# pdb.set_trace()
outputs = net.forward(inputs, adj1_test.cuda(), adj3_test.cuda(), adj2_test.cuda())
outputs = (outputs[0] + flip(outputs[1], dim=-1)) / 2
outputs = outputs.unsqueeze(0)
if iii>0:
outputs = F.upsample(outputs,size=(h,w),mode='bilinear',align_corners=True)
outputs_final = outputs_final + outputs
else:
outputs_final = outputs.clone()
################ plot pic
predictions = torch.max(outputs_final, 1)[1]
prob_predictions = torch.max(outputs_final,1)[0]
results = predictions.cpu().numpy()
prob_results = prob_predictions.cpu().numpy()
vis_res = decode_labels(results)
parsing_im = Image.fromarray(vis_res[0])
parsing_im.save(opts.output_path + 'pascal_output_vis/{}.png'.format(img_list[ii][:-1]))
cv2.imwrite(opts.output_path + 'pascal_output/{}.png'.format(img_list[ii][:-1]), results[0,:,:])
# np.save('../../cihp_prob_output/{}.npy'.format(img_list[ii][:-1]), prob_results[0, :, :])
# pred_list.append(predictions.cpu())
# label_list.append(labels.squeeze(1).cpu())
# loss = criterion(outputs, labels, batch_average=True)
# running_loss_ts += loss.item()
# total_iou += utils.get_iou(predictions, labels)
end_time = timeit.default_timer()
print('time use for '+str(ii) + ' is :' + str(end_time - start_time))
# Eval
pred_path = opts.output_path + 'pascal_output/'
eval_(pred_path=pred_path, gt_path=opts.gt_path,classes=opts.classes, txt_file=opts.txt_file)
if __name__ == '__main__':
opts = get_parser()
main(opts)