File size: 10,362 Bytes
8a6df40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import socket
import timeit
import numpy as np
from PIL import Image
from datetime import datetime
import os
import sys
import glob
from collections import OrderedDict
sys.path.append('../../')
# PyTorch includes
import torch
import pdb
from torch.autograd import Variable
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
import cv2

# Tensorboard include
# from tensorboardX import SummaryWriter

# Custom includes
from dataloaders import pascal
from utils import util
from networks import deeplab_xception_transfer, graph
from dataloaders import custom_transforms as tr

#
import argparse
import copy
import torch.nn.functional as F
from test_from_disk import eval_


gpu_id = 1

label_colours = [(0,0,0)
                # 0=background
                ,(128,0,0), (0,128,0), (128,128,0), (0,0,128), (128,0,128), (0,128,128)]


def flip(x, dim):
    indices = [slice(None)] * x.dim()
    indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
                                dtype=torch.long, device=x.device)
    return x[tuple(indices)]

# def flip_cihp(tail_list):
#     '''
#
#     :param tail_list: tail_list size is 1 x n_class x h x w
#     :return:
#     '''
#     # tail_list = tail_list[0]
#     tail_list_rev = [None] * 20
#     for xx in range(14):
#         tail_list_rev[xx] = tail_list[xx].unsqueeze(0)
#     tail_list_rev[14] = tail_list[15].unsqueeze(0)
#     tail_list_rev[15] = tail_list[14].unsqueeze(0)
#     tail_list_rev[16] = tail_list[17].unsqueeze(0)
#     tail_list_rev[17] = tail_list[16].unsqueeze(0)
#     tail_list_rev[18] = tail_list[19].unsqueeze(0)
#     tail_list_rev[19] = tail_list[18].unsqueeze(0)
#     return torch.cat(tail_list_rev,dim=0)

def decode_labels(mask, num_images=1, num_classes=20):
    """Decode batch of segmentation masks.
    
    Args:
      mask: result of inference after taking argmax.
      num_images: number of images to decode from the batch.
      num_classes: number of classes to predict (including background).
    
    Returns:
      A batch with num_images RGB images of the same size as the input. 
    """
    n, h, w = mask.shape
    assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images)
    outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8)
    for i in range(num_images):
      img = Image.new('RGB', (len(mask[i, 0]), len(mask[i])))
      pixels = img.load()
      for j_, j in enumerate(mask[i, :, :]):
          for k_, k in enumerate(j):
              if k < num_classes:
                  pixels[k_,j_] = label_colours[k]
      outputs[i] = np.array(img)
    return outputs

def get_parser():
    '''argparse begin'''
    parser = argparse.ArgumentParser()
    LookupChoices = type('', (argparse.Action,), dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))

    parser.add_argument('--epochs', default=100, type=int)
    parser.add_argument('--batch', default=16, type=int)
    parser.add_argument('--lr', default=1e-7, type=float)
    parser.add_argument('--numworker', default=12, type=int)
    parser.add_argument('--step', default=30, type=int)
    # parser.add_argument('--loadmodel',default=None,type=str)
    parser.add_argument('--classes', default=7, type=int)
    parser.add_argument('--testepoch', default=10, type=int)
    parser.add_argument('--loadmodel', default='', type=str)
    parser.add_argument('--txt_file', default='', type=str)
    parser.add_argument('--hidden_layers', default=128, type=int)
    parser.add_argument('--gpus', default=4, type=int)
    parser.add_argument('--output_path', default='./results/', type=str)
    parser.add_argument('--gt_path', default='./results/', type=str)
    opts = parser.parse_args()
    return opts


def main(opts):
    adj2_ = torch.from_numpy(graph.cihp2pascal_nlp_adj).float()
    adj2_test = adj2_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 20).cuda()

    adj1_ = Variable(torch.from_numpy(graph.preprocess_adj(graph.pascal_graph)).float())
    adj1_test = adj1_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 7).cuda()

    cihp_adj = graph.preprocess_adj(graph.cihp_graph)
    adj3_ = Variable(torch.from_numpy(cihp_adj).float())
    adj3_test = adj3_.unsqueeze(0).unsqueeze(0).expand(1, 1, 20, 20).cuda()

    p = OrderedDict()  # Parameters to include in report
    p['trainBatch'] = opts.batch  # Training batch size
    p['nAveGrad'] = 1  # Average the gradient of several iterations
    p['lr'] = opts.lr  # Learning rate
    p['lrFtr'] = 1e-5
    p['lraspp'] = 1e-5
    p['lrpro'] = 1e-5
    p['lrdecoder'] = 1e-5
    p['lrother']  = 1e-5
    p['wd'] = 5e-4  # Weight decay
    p['momentum'] = 0.9  # Momentum
    p['epoch_size'] = 10  # How many epochs to change learning rate
    p['num_workers'] = opts.numworker
    backbone = 'xception' # Use xception or resnet as feature extractor,

    with open(opts.txt_file, 'r') as f:
        img_list = f.readlines()

    max_id = 0
    save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
    exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
    runs = glob.glob(os.path.join(save_dir_root, 'run', 'run_*'))
    for r in runs:
        run_id = int(r.split('_')[-1])
        if run_id >= max_id:
            max_id = run_id + 1
    # run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0

    # Network definition
    if backbone == 'xception':
        net = deeplab_xception_transfer.deeplab_xception_transfer_projection(n_classes=opts.classes, os=16,
                                                                                     hidden_layers=opts.hidden_layers, source_classes=20,
                                                                                     )
    elif backbone == 'resnet':
        # net = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=7, os=16, pretrained=True)
        raise NotImplementedError
    else:
        raise NotImplementedError

    if gpu_id >= 0:
        net.cuda()

    # net load weights
    if not opts.loadmodel =='':
        x = torch.load(opts.loadmodel)
        net.load_source_model(x)
        print('load model:' ,opts.loadmodel)
    else:
        print('no model load !!!!!!!!')

    ## multi scale
    scale_list=[1,0.5,0.75,1.25,1.5,1.75]
    testloader_list = []
    testloader_flip_list = []
    for pv in scale_list:
        composed_transforms_ts = transforms.Compose([
            tr.Scale_(pv),
            tr.Normalize_xception_tf(),
            tr.ToTensor_()])

        composed_transforms_ts_flip = transforms.Compose([
            tr.Scale_(pv),
            tr.HorizontalFlip(),
            tr.Normalize_xception_tf(),
            tr.ToTensor_()])

        voc_val = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts)
        voc_val_f = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts_flip)

        testloader = DataLoader(voc_val, batch_size=1, shuffle=False, num_workers=p['num_workers'])
        testloader_flip = DataLoader(voc_val_f, batch_size=1, shuffle=False, num_workers=p['num_workers'])

        testloader_list.append(copy.deepcopy(testloader))
        testloader_flip_list.append(copy.deepcopy(testloader_flip))

    print("Eval Network")

    if not os.path.exists(opts.output_path + 'pascal_output_vis/'):
        os.makedirs(opts.output_path + 'pascal_output_vis/')
    if not os.path.exists(opts.output_path + 'pascal_output/'):
        os.makedirs(opts.output_path + 'pascal_output/')

    start_time = timeit.default_timer()
    # One testing epoch
    total_iou = 0.0
    net.eval()
    for ii, large_sample_batched in enumerate(zip(*testloader_list, *testloader_flip_list)):
        print(ii)
        #1 0.5 0.75 1.25 1.5 1.75 ; flip:
        sample1 = large_sample_batched[:6]
        sample2 = large_sample_batched[6:]
        for iii,sample_batched in enumerate(zip(sample1,sample2)):
            inputs, labels = sample_batched[0]['image'], sample_batched[0]['label']
            inputs_f, _ = sample_batched[1]['image'], sample_batched[1]['label']
            inputs = torch.cat((inputs,inputs_f),dim=0)
            if iii == 0:
                _,_,h,w = inputs.size()
            # assert inputs.size() == inputs_f.size()

            # Forward pass of the mini-batch
            inputs, labels = Variable(inputs, requires_grad=False), Variable(labels)

            with torch.no_grad():
                if gpu_id >= 0:
                    inputs, labels = inputs.cuda(), labels.cuda()
                # outputs = net.forward(inputs)
                # pdb.set_trace()
                outputs = net.forward(inputs, adj1_test.cuda(), adj3_test.cuda(), adj2_test.cuda())
                outputs = (outputs[0] + flip(outputs[1], dim=-1)) / 2
                outputs = outputs.unsqueeze(0)

                if iii>0:
                    outputs = F.upsample(outputs,size=(h,w),mode='bilinear',align_corners=True)
                    outputs_final = outputs_final + outputs
                else:
                    outputs_final = outputs.clone()
        ################ plot pic
        predictions = torch.max(outputs_final, 1)[1]
        prob_predictions = torch.max(outputs_final,1)[0]
        results = predictions.cpu().numpy()
        prob_results = prob_predictions.cpu().numpy()
        vis_res = decode_labels(results)

        parsing_im = Image.fromarray(vis_res[0])
        parsing_im.save(opts.output_path + 'pascal_output_vis/{}.png'.format(img_list[ii][:-1]))
        cv2.imwrite(opts.output_path + 'pascal_output/{}.png'.format(img_list[ii][:-1]), results[0,:,:])
        # np.save('../../cihp_prob_output/{}.npy'.format(img_list[ii][:-1]), prob_results[0, :, :])
        # pred_list.append(predictions.cpu())
        # label_list.append(labels.squeeze(1).cpu())
        # loss = criterion(outputs, labels, batch_average=True)
        # running_loss_ts += loss.item()

        # total_iou += utils.get_iou(predictions, labels)
    end_time = timeit.default_timer()
    print('time use for '+str(ii) + ' is :' + str(end_time - start_time))

    # Eval
    pred_path = opts.output_path + 'pascal_output/'
    eval_(pred_path=pred_path, gt_path=opts.gt_path,classes=opts.classes, txt_file=opts.txt_file)

if __name__ == '__main__':
    opts = get_parser()
    main(opts)