|
import gradio as gr |
|
from transformers import AutoModel |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
model = AutoModel.from_pretrained("jinaai/jina-clip-v1", trust_remote_code=True) |
|
|
|
|
|
def compute_similarity(input1, input2, input1_type, input2_type): |
|
|
|
if input1_type == "Text" and (not input1 or input1.strip() == ""): |
|
return "Error: Input 1 is empty!" |
|
if input2_type == "Text" and (not input2 or input2.strip() == ""): |
|
return "Error: Input 2 is empty!" |
|
if input1_type == "Image" and input1 is None: |
|
return "Error: Image 1 is missing!" |
|
if input2_type == "Image" and input2 is None: |
|
return "Error: Image 2 is missing!" |
|
|
|
|
|
inputs = [] |
|
|
|
if input1_type == "Text": |
|
text1_embedding = model.encode_text([input1]) |
|
inputs.append(text1_embedding) |
|
elif input1_type == "Image": |
|
image1_embedding = model.encode_image([Image.fromarray(input1)]) |
|
inputs.append(image1_embedding) |
|
|
|
if input2_type == "Text": |
|
text2_embedding = model.encode_text([input2]) |
|
inputs.append(text2_embedding) |
|
elif input2_type == "Image": |
|
image2_embedding = model.encode_image([Image.fromarray(input2)]) |
|
inputs.append(image2_embedding) |
|
|
|
|
|
similarity_score = (inputs[0] @ inputs[1].T).item() |
|
return f"Similarity Score: {similarity_score:.4f}" |
|
|
|
|
|
def update_visibility(input1_type, input2_type): |
|
return ( |
|
gr.update(visible=(input1_type == "Text")), |
|
gr.update(visible=(input1_type == "Image")), |
|
gr.update(visible=(input2_type == "Text")), |
|
gr.update(visible=(input2_type == "Image")) |
|
) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## JinaAI CLIP Multimodal Similarity") |
|
|
|
with gr.Row(): |
|
input1_type = gr.Radio(["Text", "Image"], label="Input 1 Type", value="Text") |
|
input2_type = gr.Radio(["Text", "Image"], label="Input 2 Type", value="Image") |
|
|
|
with gr.Row(): |
|
input1_text = gr.Textbox(label="Text Input 1", visible=True) |
|
input1_image = gr.Image(type="numpy", interactive=True, label="Image Input 1", visible=False) |
|
|
|
with gr.Row(): |
|
input2_text = gr.Textbox(label="Text Input 2", visible=False) |
|
input2_image = gr.Image(type="numpy", interactive=True, label="Image Input 2", visible=True) |
|
|
|
output = gr.Textbox(label="Similarity Score / Error", interactive=False) |
|
|
|
|
|
input1_type.change(update_visibility, inputs=[input1_type, input2_type], |
|
outputs=[input1_text, input1_image, input2_text, input2_image]) |
|
input2_type.change(update_visibility, inputs=[input1_type, input2_type], |
|
outputs=[input1_text, input1_image, input2_text, input2_image]) |
|
|
|
btn = gr.Button("Compute Similarity") |
|
btn.click(compute_similarity, inputs=[input1_text, input2_text, input1_type, input2_type], outputs=output) |
|
|
|
demo.launch() |
|
|