File size: 5,374 Bytes
e547b24
df8ede4
a1c8ee1
 
df8ede4
a1c8ee1
 
5392ab0
df8ede4
 
 
 
 
a1c8ee1
df8ede4
a1c8ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df8ede4
 
 
a1c8ee1
 
 
 
df8ede4
a1c8ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0338ea
adb8560
a1c8ee1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from langchain.chains import RetrievalQA
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Load a Hugging Face model for Q&A
model_name = "EleutherAI/gpt-neox-20b"  # You can choose a lighter model if needed
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=512)

# Knowledge base for Crustdata APIs
# Knowledge base for Crustdata APIs
docs = """
# Crustdata Dataset API

## Description
The Crustdata Dataset API provides access to a wide variety of datasets across different domains. It allows users to search, filter, and retrieve datasets based on categories, tags, and other metadata.

## Key Endpoints

### 1. **GET /datasets**
- **Description**: Retrieves a list of available datasets.
- **Parameters**:
  - `category` (optional): Filter datasets by a specific category.
  - `tags` (optional): Filter datasets by tags (comma-separated).
  - `limit` (optional): Maximum number of datasets to return (default: 10).

- **Example Request**:
  ```bash
  curl -X GET "https://api.crustdata.com/datasets?category=finance&tags=economy,stocks&limit=5"
  ```

- **Example Response**:
  ```json
  {
    "datasets": [
      {
        "id": "12345",
        "name": "Global Finance Dataset",
        "category": "finance",
        "tags": ["economy", "stocks"]
      },
      ...
    ]
  }
  ```

### 2. **GET /datasets/{id}**
- **Description**: Retrieves detailed information about a specific dataset.
- **Parameters**:
  - `id` (required): The unique identifier of the dataset.

- **Example Request**:
  ```bash
  curl -X GET "https://api.crustdata.com/datasets/12345"
  ```

- **Example Response**:
  ```json
  {
    "id": "12345",
    "name": "Global Finance Dataset",
    "description": "A comprehensive dataset on global financial markets.",
    "category": "finance",
    "tags": ["economy", "stocks"],
    "source": "World Bank"
  }
  ```

---

# Crustdata Discovery and Enrichment API

## Description
The Crustdata Discovery and Enrichment API allows users to enrich their datasets by adding metadata, geolocation information, and other relevant attributes.

## Key Endpoints

### 1. **POST /enrich**
- **Description**: Enriches input data with additional metadata based on the specified enrichment type.
- **Parameters**:
  - `input_data` (required): A list of data entries to be enriched.
  - `enrichment_type` (required): The type of enrichment to apply. Supported types:
    - `geolocation`
    - `demographics`

- **Example Request**:
  ```bash
  curl -X POST "https://api.crustdata.com/enrich" \
    -H "Content-Type: application/json" \
    -d '{
          "input_data": [{"address": "123 Main St, Springfield"}],
          "enrichment_type": "geolocation"
        }'
  ```

- **Example Response**:
  ```json
  {
    "enriched_data": [
      {
        "address": "123 Main St, Springfield",
        "latitude": 37.12345,
        "longitude": -93.12345
      }
    ]
  }
  ```

### 2. **POST /search**
- **Description**: Searches for relevant metadata or datasets based on user-provided criteria.
- **Parameters**:
  - `query` (required): The search term or query string.
  - `filters` (optional): Additional filters to narrow down the search results.
  
- **Example Request**:
  ```bash
  curl -X POST "https://api.crustdata.com/search" \
    -H "Content-Type: application/json" \
    -d '{
          "query": "energy consumption",
          "filters": {"category": "energy"}
        }'
  ```

- **Example Response**:
  ```json
  {
    "results": [
      {
        "id": "67890",
        "name": "Energy Consumption Dataset",
        "category": "energy",
        "tags": ["consumption", "renewables"]
      }
    ]
  }
  ```

---

# General Notes
- All endpoints require authentication using an API key.
- API requests must include the `Authorization` header:
  ```plaintext
  Authorization: Bearer YOUR_API_KEY
  ```
- Response format: JSON
- Base URL: `https://api.crustdata.com`
"""

# Split the documentation into chunks for embedding
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
doc_chunks = text_splitter.create_documents([docs])

# Embed the documents using sentence-transformers
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
docsearch = FAISS.from_documents(doc_chunks, embeddings)

# Create a QA chain
qa_chain = RetrievalQA.from_chain_type(
    llm=qa_pipeline,
    retriever=docsearch.as_retriever(),
    return_source_documents=True
)

# Function to handle user queries
def answer_question(question):
    result = qa_chain.run(question)
    return result

# Create a Gradio interface
chat_interface = gr.Interface(
    fn=answer_question,
    inputs=gr.Textbox(lines=2, placeholder="Ask a question about Crustdata APIs..."),
    outputs="text",
    title="Crustdata API Chat",
    description="Ask any technical questions about Crustdata’s Dataset and Discovery APIs.",
)

# Launch the Gradio app
chat_interface.launch(share=True)