Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
from langchain.chains import RetrievalQA
|
4 |
-
from langchain.embeddings import OpenAIEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
|
|
6 |
from langchain.document_loaders import TextLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
-
from langchain.llms import OpenAI
|
9 |
-
import os
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
|
|
13 |
# Knowledge base for Crustdata APIs
|
14 |
docs = """
|
15 |
# Crustdata Dataset API
|
@@ -154,13 +157,14 @@ The Crustdata Discovery and Enrichment API allows users to enrich their datasets
|
|
154 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
155 |
doc_chunks = text_splitter.create_documents([docs])
|
156 |
|
157 |
-
# Embed the documents using
|
158 |
-
|
|
|
159 |
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
160 |
|
161 |
# Create a QA chain
|
162 |
qa_chain = RetrievalQA.from_chain_type(
|
163 |
-
llm=
|
164 |
retriever=docsearch.as_retriever(),
|
165 |
return_source_documents=True
|
166 |
)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
from langchain.chains import RetrievalQA
|
|
|
4 |
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.document_loaders import TextLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
8 |
|
9 |
+
# Load a Hugging Face model for Q&A
|
10 |
+
model_name = "EleutherAI/gpt-neox-20b" # You can choose a lighter model if needed
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
14 |
|
15 |
+
# Knowledge base for Crustdata APIs
|
16 |
# Knowledge base for Crustdata APIs
|
17 |
docs = """
|
18 |
# Crustdata Dataset API
|
|
|
157 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
158 |
doc_chunks = text_splitter.create_documents([docs])
|
159 |
|
160 |
+
# Embed the documents using sentence-transformers
|
161 |
+
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
162 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
163 |
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
164 |
|
165 |
# Create a QA chain
|
166 |
qa_chain = RetrievalQA.from_chain_type(
|
167 |
+
llm=qa_pipeline,
|
168 |
retriever=docsearch.as_retriever(),
|
169 |
return_source_documents=True
|
170 |
)
|