Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
from langchain.chains import RetrievalQA
|
| 4 |
-
from langchain.embeddings import OpenAIEmbeddings
|
| 5 |
from langchain.vectorstores import FAISS
|
|
|
|
| 6 |
from langchain.document_loaders import TextLoader
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain.llms import OpenAI
|
| 9 |
-
import os
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
# Knowledge base for Crustdata APIs
|
| 14 |
docs = """
|
| 15 |
# Crustdata Dataset API
|
|
@@ -154,13 +157,14 @@ The Crustdata Discovery and Enrichment API allows users to enrich their datasets
|
|
| 154 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 155 |
doc_chunks = text_splitter.create_documents([docs])
|
| 156 |
|
| 157 |
-
# Embed the documents using
|
| 158 |
-
|
|
|
|
| 159 |
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
| 160 |
|
| 161 |
# Create a QA chain
|
| 162 |
qa_chain = RetrievalQA.from_chain_type(
|
| 163 |
-
llm=
|
| 164 |
retriever=docsearch.as_retriever(),
|
| 165 |
return_source_documents=True
|
| 166 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from langchain.chains import RetrievalQA
|
|
|
|
| 4 |
from langchain.vectorstores import FAISS
|
| 5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain.document_loaders import TextLoader
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Load a Hugging Face model for Q&A
|
| 10 |
+
model_name = "EleutherAI/gpt-neox-20b" # You can choose a lighter model if needed
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 13 |
+
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
| 14 |
|
| 15 |
+
# Knowledge base for Crustdata APIs
|
| 16 |
# Knowledge base for Crustdata APIs
|
| 17 |
docs = """
|
| 18 |
# Crustdata Dataset API
|
|
|
|
| 157 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 158 |
doc_chunks = text_splitter.create_documents([docs])
|
| 159 |
|
| 160 |
+
# Embed the documents using sentence-transformers
|
| 161 |
+
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
| 162 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 163 |
docsearch = FAISS.from_documents(doc_chunks, embeddings)
|
| 164 |
|
| 165 |
# Create a QA chain
|
| 166 |
qa_chain = RetrievalQA.from_chain_type(
|
| 167 |
+
llm=qa_pipeline,
|
| 168 |
retriever=docsearch.as_retriever(),
|
| 169 |
return_source_documents=True
|
| 170 |
)
|