DevToolKit / app.py
acecalisto3's picture
Update app.py
66c98f0 verified
raw
history blame
8.45 kB
import streamlit as st
import os
import subprocess
import random
import string
from huggingface_hub import cached_download, hf_hub_url
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
import pylint
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import pipeline
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Define functions for each feature
# 1. Chat Interface
def chat_interface(input_text):
"""Handles user input in the chat interface.
Args:
input_text: User's input text.
Returns:
The chatbot's response.
"""
# Load the appropriate language model from Hugging Face
model_name = 'google/flan-t5-xl' # Choose a suitable model
model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json')
model_path = cached_download(model_url)
generator = pipeline('text-generation', model=model_path)
# Generate chatbot response
response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']
return response
# 2. Terminal
def terminal_interface(command):
"""Executes commands in the terminal.
Args:
command: User's command.
Returns:
The terminal output.
"""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
except Exception as e:
output = f'Error: {e}'
return output
# 3. Code Editor
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor.
Args:
code: User's code.
Returns:
Formatted and linted code.
"""
# Format code using black
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.InvalidInput:
formatted_code = code # Keep original code if formatting fails
# Lint code using pylint
try:
pylint_output = pylint.run(formatted_code, output=None)
lint_results = pylint_output.linter.stats.get('global_note', 0)
lint_message = f"Pylint score: {lint_results:.2f}"
except Exception as e:
lint_message = f"Pylint error: {e}"
return formatted_code, lint_message
# 4. Workspace
def workspace_interface(project_name):
"""Manages projects, files, and resources in the workspace.
Args:
project_name: Name of the new project.
Returns:
Project creation status.
"""
# Create project directory
try:
os.makedirs(os.path.join('projects', project_name))
status = f'Project \"{project_name}\" created successfully.'
except FileExistsError:
status = f'Project \"{project_name}\" already exists.'
return status
# 5. AI-Infused Tools
# Define custom AI-powered tools using Hugging Face models
# Example: Text summarization tool
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model.
Args:
text: Text to be summarized.
Returns:
Summarized text.
"""
summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
return summary
# 6. Code Generation
def generate_code(idea):
"""Generates code based on a given idea using the bigscience/T0_3B model.
Args:
idea: The idea for the code to be generated.
Returns:
The generated code as a string.
"""
# Load the code generation model
model_name = 'bigscience/T0_3B' # Choose your model
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Generate the code
input_text = f"""
# Idea: {idea}
# Code:
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_sequences = model.generate(
input_ids=input_ids,
max_length=1024,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7, # Adjust temperature for creativity
top_k=50, # Adjust top_k for diversity
)
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Remove the prompt and formatting
generated_code = generated_code.split("\n# Code:")[1].strip()
return generated_code
# 7. Sentiment Analysis
def analyze_sentiment(text):
"""Analyzes the sentiment of a given text.
Args:
text: The text to analyze.
Returns:
A dictionary containing the sentiment label and score.
"""
model_name = 'distilbert-base-uncased-finetuned-sst-3-literal-labels'
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
result = classifier(text)[0]
return result
# 8. Text Translation
def translate_text(text, target_language):
"""Translates a given text to the specified target language.
Args:
text: The text to translate.
target_language: The target language code (e.g., 'fr' for French, 'es' for Spanish).
Returns:
The translated text.
"""
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") # Example: English to Spanish
translation = translator(text, target_lang=target_language)[0]['translation_text']
return translation
# Streamlit App
st.title("CodeCraft: Your AI-Powered Development Toolkit")
# Workspace Selection
st.sidebar.header("Select Workspace")
project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects'))
# Chat Interface
st.header("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.header("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.code(terminal_output, language="bash")
# Code Editor Interface
st.header("Code Editor")
code_editor = st.text_area("Write your code:", language="python", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# AI-Infused Tools
st.header("AI-Powered Tools")
# Text Summarization
st.subheader("Text Summarization")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis
st.subheader("Sentiment Analysis")
text_to_analyze = st.text_area("Enter text to analyze sentiment:")
if st.button("Analyze Sentiment"):
sentiment_result = analyze_sentiment(text_to_analyze)
st.write(f"Sentiment: {sentiment_result['label']}, Score: {sentiment_result['score']}")
# Text Translation
st.subheader("Text Translation")
text_to_translate = st.text_area("Enter text to translate:")
target_language = st.selectbox("Choose target language", ['fr', 'es', 'de', 'zh-CN']) # Example languages
if st.button("Translate"):
translation = translate_text(text_to_translate, target_language)
st.write(f"Translation: {translation}")
# Code Generation
st.header("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
try:
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
except Exception as e:
st.error(f"Error generating code: {e}")
# Launch Chat App (with Authentication)
if st.button("Launch Chat App"):
# Get the current working directory
cwd = os.getcwd()
# User Authentication
hf_token = st.text_input("Enter your Hugging Face Token:")
if hf_token:
# Set the token using HfFolder
HfFolder.save_token(hf_token)
# Construct the command to launch the chat app
command = f"cd projects/{project_name} && streamlit run chat_app.py"
# Execute the command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
st.write(f"Chat app launched successfully!")
except Exception as e:
st.error(f"Error launching chat app: {e}")