File size: 8,446 Bytes
d754f21
a98a37e
 
9c5cb7f
 
66c98f0
86363d9
d754f21
9c5cb7f
dfa271d
 
 
097ecdb
8363049
 
 
d754f21
8363049
 
 
 
 
 
d754f21
8363049
9c5cb7f
 
 
 
 
2a5ea3c
8363049
9c5cb7f
d754f21
8363049
 
9c5cb7f
8363049
 
 
 
 
 
d754f21
8363049
 
 
 
 
 
9c5cb7f
d754f21
8363049
 
 
 
 
 
 
 
 
 
 
d754f21
 
 
 
 
 
 
 
9c5cb7f
 
 
d754f21
 
 
 
8363049
 
d754f21
8363049
 
 
 
 
 
d754f21
8363049
 
 
9c5cb7f
 
8363049
9c5cb7f
a3f74af
 
8363049
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5cb7f
 
8363049
 
86363d9
 
9c5cb7f
86363d9
 
 
 
 
 
 
 
 
9c5cb7f
 
 
86363d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa271d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d754f21
 
 
9c5cb7f
dfa271d
d9a330b
9c5cb7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa271d
 
 
9c5cb7f
 
 
 
 
dfa271d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5cb7f
 
 
 
 
a3f74af
 
9c5cb7f
 
a3f74af
dfa271d
9c5cb7f
 
 
 
dfa271d
66c98f0
 
 
 
dfa271d
9c5cb7f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import streamlit as st
import os
import subprocess
import random
import string
from huggingface_hub import cached_download, hf_hub_url
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
import pylint
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import pipeline
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Define functions for each feature

# 1. Chat Interface
def chat_interface(input_text):
    """Handles user input in the chat interface.

    Args:
        input_text: User's input text.

    Returns:
        The chatbot's response.
    """
    # Load the appropriate language model from Hugging Face
    model_name = 'google/flan-t5-xl'  # Choose a suitable model
    model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json')
    model_path = cached_download(model_url)
    generator = pipeline('text-generation', model=model_path)

    # Generate chatbot response
    response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']
    return response

# 2. Terminal
def terminal_interface(command):
    """Executes commands in the terminal.

    Args:
        command: User's command.

    Returns:
        The terminal output.
    """
    # Execute command
    try:
        process = subprocess.run(command.split(), capture_output=True, text=True)
        output = process.stdout
    except Exception as e:
        output = f'Error: {e}'
    return output

# 3. Code Editor
def code_editor_interface(code):
    """Provides code completion, formatting, and linting in the code editor.

    Args:
        code: User's code.

    Returns:
        Formatted and linted code.
    """
    # Format code using black
    try:
        formatted_code = black.format_str(code, mode=black.FileMode())
    except black.InvalidInput:
        formatted_code = code  # Keep original code if formatting fails

    # Lint code using pylint
    try:
        pylint_output = pylint.run(formatted_code, output=None)
        lint_results = pylint_output.linter.stats.get('global_note', 0)
        lint_message = f"Pylint score: {lint_results:.2f}"
    except Exception as e:
        lint_message = f"Pylint error: {e}"

    return formatted_code, lint_message

# 4. Workspace
def workspace_interface(project_name):
    """Manages projects, files, and resources in the workspace.

    Args:
        project_name: Name of the new project.

    Returns:
        Project creation status.
    """
    # Create project directory
    try:
        os.makedirs(os.path.join('projects', project_name))
        status = f'Project \"{project_name}\" created successfully.'
    except FileExistsError:
        status = f'Project \"{project_name}\" already exists.'
    return status

# 5. AI-Infused Tools

# Define custom AI-powered tools using Hugging Face models

# Example: Text summarization tool
def summarize_text(text):
    """Summarizes a given text using a Hugging Face model.

    Args:
        text: Text to be summarized.

    Returns:
        Summarized text.
    """
    summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
    summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
    return summary

# 6. Code Generation
def generate_code(idea):
    """Generates code based on a given idea using the bigscience/T0_3B model.

    Args:
        idea: The idea for the code to be generated.

    Returns:
        The generated code as a string.
    """

    # Load the code generation model
    model_name = 'bigscience/T0_3B'  # Choose your model
    model = AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    # Generate the code
    input_text = f"""
    # Idea: {idea}
    # Code:
    """
    input_ids = tokenizer.encode(input_text, return_tensors="pt")
    output_sequences = model.generate(
        input_ids=input_ids,
        max_length=1024,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        early_stopping=True,
        temperature=0.7,  # Adjust temperature for creativity
        top_k=50,  # Adjust top_k for diversity
    )
    generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)

    # Remove the prompt and formatting
    generated_code = generated_code.split("\n# Code:")[1].strip()

    return generated_code

# 7. Sentiment Analysis
def analyze_sentiment(text):
    """Analyzes the sentiment of a given text.

    Args:
        text: The text to analyze.

    Returns:
        A dictionary containing the sentiment label and score.
    """
    model_name = 'distilbert-base-uncased-finetuned-sst-3-literal-labels'
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
    result = classifier(text)[0]
    return result

# 8. Text Translation
def translate_text(text, target_language):
    """Translates a given text to the specified target language.

    Args:
        text: The text to translate.
        target_language: The target language code (e.g., 'fr' for French, 'es' for Spanish).

    Returns:
        The translated text.
    """
    translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")  # Example: English to Spanish
    translation = translator(text, target_lang=target_language)[0]['translation_text']
    return translation

# Streamlit App
st.title("CodeCraft: Your AI-Powered Development Toolkit")

# Workspace Selection
st.sidebar.header("Select Workspace")
project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects'))

# Chat Interface
st.header("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
    chat_response = chat_interface(chat_input)
    st.write(f"CodeCraft: {chat_response}")

# Terminal Interface
st.header("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
    terminal_output = terminal_interface(terminal_input)
    st.code(terminal_output, language="bash")

# Code Editor Interface
st.header("Code Editor")
code_editor = st.text_area("Write your code:", language="python", height=300)
if st.button("Format & Lint"):
    formatted_code, lint_message = code_editor_interface(code_editor)
    st.code(formatted_code, language="python")
    st.info(lint_message)

# AI-Infused Tools
st.header("AI-Powered Tools")

# Text Summarization
st.subheader("Text Summarization")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
    summary = summarize_text(text_to_summarize)
    st.write(f"Summary: {summary}")

# Sentiment Analysis
st.subheader("Sentiment Analysis")
text_to_analyze = st.text_area("Enter text to analyze sentiment:")
if st.button("Analyze Sentiment"):
    sentiment_result = analyze_sentiment(text_to_analyze)
    st.write(f"Sentiment: {sentiment_result['label']}, Score: {sentiment_result['score']}")

# Text Translation
st.subheader("Text Translation")
text_to_translate = st.text_area("Enter text to translate:")
target_language = st.selectbox("Choose target language", ['fr', 'es', 'de', 'zh-CN'])  # Example languages
if st.button("Translate"):
    translation = translate_text(text_to_translate, target_language)
    st.write(f"Translation: {translation}")

# Code Generation
st.header("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
    try:
        generated_code = generate_code(code_idea)
        st.code(generated_code, language="python")
    except Exception as e:
        st.error(f"Error generating code: {e}")

# Launch Chat App (with Authentication)
if st.button("Launch Chat App"):
    # Get the current working directory
    cwd = os.getcwd()

    # User Authentication
hf_token = st.text_input("Enter your Hugging Face Token:")
if hf_token:
    # Set the token using HfFolder
    HfFolder.save_token(hf_token)

    # Construct the command to launch the chat app
    command = f"cd projects/{project_name} && streamlit run chat_app.py"

    # Execute the command
    try:
        process = subprocess.run(command.split(), capture_output=True, text=True)
        st.write(f"Chat app launched successfully!")
    except Exception as e:
        st.error(f"Error launching chat app: {e}")