Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
|
|
|
|
|
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import black
|
6 |
-
|
7 |
-
from io import StringIO
|
8 |
-
import sys
|
9 |
-
|
10 |
-
PROJECT_ROOT = "projects"
|
11 |
-
|
12 |
-
# Global state to manage communication between Tool Box and Workspace Chat App
|
13 |
-
if 'chat_history' not in st.session_state:
|
14 |
-
st.session_state.chat_history = []
|
15 |
-
if 'terminal_history' not in st.session_state:
|
16 |
-
st.session_state.terminal_history = []
|
17 |
-
if 'workspace_projects' not in st.session_state:
|
18 |
-
st.session_state.workspace_projects = {}
|
19 |
|
20 |
# Define functions for each feature
|
21 |
|
@@ -29,36 +20,22 @@ def chat_interface(input_text):
|
|
29 |
Returns:
|
30 |
The chatbot's response.
|
31 |
"""
|
32 |
-
# Load the
|
33 |
-
model_name =
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
38 |
-
except EnvironmentError as e:
|
39 |
-
return f"Error loading model: {e}"
|
40 |
-
|
41 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
42 |
-
max_input_length = 900
|
43 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
44 |
-
if input_ids.shape[1] > max_input_length:
|
45 |
-
input_ids = input_ids[:, :max_input_length]
|
46 |
|
47 |
# Generate chatbot response
|
48 |
-
|
49 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
|
50 |
-
)
|
51 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
return response
|
53 |
|
54 |
-
|
55 |
# 2. Terminal
|
56 |
-
def terminal_interface(command
|
57 |
"""Executes commands in the terminal.
|
58 |
|
59 |
Args:
|
60 |
command: User's command.
|
61 |
-
project_name: Name of the project workspace to add installed packages.
|
62 |
|
63 |
Returns:
|
64 |
The terminal output.
|
@@ -67,18 +44,10 @@ def terminal_interface(command, project_name=None):
|
|
67 |
try:
|
68 |
process = subprocess.run(command.split(), capture_output=True, text=True)
|
69 |
output = process.stdout
|
70 |
-
|
71 |
-
# If the command is to install a package, update the workspace
|
72 |
-
if "install" in command and project_name:
|
73 |
-
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
|
74 |
-
with open(requirements_path, "a") as req_file:
|
75 |
-
package_name = command.split()[-1]
|
76 |
-
req_file.write(f"{package_name}\n")
|
77 |
except Exception as e:
|
78 |
-
output = f
|
79 |
return output
|
80 |
|
81 |
-
|
82 |
# 3. Code Editor
|
83 |
def code_editor_interface(code):
|
84 |
"""Provides code completion, formatting, and linting in the code editor.
|
@@ -97,19 +66,14 @@ def code_editor_interface(code):
|
|
97 |
|
98 |
# Lint code using pylint
|
99 |
try:
|
100 |
-
pylint_output =
|
101 |
-
|
102 |
-
|
103 |
-
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
|
104 |
-
sys.stdout = sys.__stdout__
|
105 |
-
sys.stderr = sys.__stderr__
|
106 |
-
lint_message = pylint_output.getvalue()
|
107 |
except Exception as e:
|
108 |
lint_message = f"Pylint error: {e}"
|
109 |
|
110 |
return formatted_code, lint_message
|
111 |
|
112 |
-
|
113 |
# 4. Workspace
|
114 |
def workspace_interface(project_name):
|
115 |
"""Manages projects, files, and resources in the workspace.
|
@@ -120,43 +84,14 @@ def workspace_interface(project_name):
|
|
120 |
Returns:
|
121 |
Project creation status.
|
122 |
"""
|
123 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
124 |
# Create project directory
|
125 |
try:
|
126 |
-
os.makedirs(
|
127 |
-
|
128 |
-
with open(requirements_path, "w") as req_file:
|
129 |
-
req_file.write("") # Initialize an empty requirements.txt file
|
130 |
-
status = f'Project "{project_name}" created successfully.'
|
131 |
-
st.session_state.workspace_projects[project_name] = {'files': []}
|
132 |
except FileExistsError:
|
133 |
-
status = f'Project "{project_name}" already exists.'
|
134 |
-
return status
|
135 |
-
|
136 |
-
def add_code_to_workspace(project_name, code, file_name):
|
137 |
-
"""Adds selected code files to the workspace.
|
138 |
-
|
139 |
-
Args:
|
140 |
-
project_name: Name of the project.
|
141 |
-
code: Code to be added.
|
142 |
-
file_name: Name of the file to be created.
|
143 |
-
|
144 |
-
Returns:
|
145 |
-
File creation status.
|
146 |
-
"""
|
147 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
148 |
-
file_path = os.path.join(project_path, file_name)
|
149 |
-
|
150 |
-
try:
|
151 |
-
with open(file_path, "w") as code_file:
|
152 |
-
code_file.write(code)
|
153 |
-
status = f'File "{file_name}" added to project "{project_name}" successfully.'
|
154 |
-
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
155 |
-
except Exception as e:
|
156 |
-
status = f"Error: {e}"
|
157 |
return status
|
158 |
|
159 |
-
|
160 |
# 5. AI-Infused Tools
|
161 |
|
162 |
# Define custom AI-powered tools using Hugging Face models
|
@@ -171,72 +106,13 @@ def summarize_text(text):
|
|
171 |
Returns:
|
172 |
Summarized text.
|
173 |
"""
|
174 |
-
|
175 |
-
|
176 |
-
try:
|
177 |
-
summarizer = pipeline("summarization", model=model_name)
|
178 |
-
except EnvironmentError as e:
|
179 |
-
return f"Error loading model: {e}"
|
180 |
-
|
181 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
182 |
-
max_input_length = 1024
|
183 |
-
inputs = text
|
184 |
-
if len(text) > max_input_length:
|
185 |
-
inputs = text[:max_input_length]
|
186 |
-
|
187 |
-
# Generate summary
|
188 |
-
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
|
189 |
-
"summary_text"
|
190 |
-
]
|
191 |
return summary
|
192 |
|
193 |
-
# Example: Sentiment analysis tool
|
194 |
-
def sentiment_analysis(text):
|
195 |
-
"""Performs sentiment analysis on a given text using a Hugging Face model.
|
196 |
-
|
197 |
-
Args:
|
198 |
-
text: Text to be analyzed.
|
199 |
-
|
200 |
-
Returns:
|
201 |
-
Sentiment analysis result.
|
202 |
-
"""
|
203 |
-
# Load the sentiment analysis model
|
204 |
-
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
205 |
-
try:
|
206 |
-
analyzer = pipeline("sentiment-analysis", model=model_name)
|
207 |
-
except EnvironmentError as e:
|
208 |
-
return f"Error loading model: {e}"
|
209 |
-
|
210 |
-
# Perform sentiment analysis
|
211 |
-
result = analyzer(text)[0]
|
212 |
-
return result
|
213 |
-
|
214 |
-
# Example: Text translation tool
|
215 |
-
def translate_text(text, target_language="fr"):
|
216 |
-
"""Translates a given text to the target language using a Hugging Face model.
|
217 |
-
|
218 |
-
Args:
|
219 |
-
text: Text to be translated.
|
220 |
-
target_language: The language to translate the text to.
|
221 |
-
|
222 |
-
Returns:
|
223 |
-
Translated text.
|
224 |
-
"""
|
225 |
-
# Load the translation model
|
226 |
-
model_name = f"Helsinki-NLP/opus-mt-en-{target_language}"
|
227 |
-
try:
|
228 |
-
translator = pipeline("translation", model=model_name)
|
229 |
-
except EnvironmentError as e:
|
230 |
-
return f"Error loading model: {e}"
|
231 |
-
|
232 |
-
# Translate text
|
233 |
-
translated_text = translator(text)[0]["translation_text"]
|
234 |
-
return translated_text
|
235 |
-
|
236 |
-
|
237 |
# 6. Code Generation
|
238 |
def generate_code(idea):
|
239 |
-
"""Generates code based on a given idea using the
|
240 |
|
241 |
Args:
|
242 |
idea: The idea for the code to be generated.
|
@@ -246,12 +122,9 @@ def generate_code(idea):
|
|
246 |
"""
|
247 |
|
248 |
# Load the code generation model
|
249 |
-
model_name =
|
250 |
-
|
251 |
-
|
252 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
253 |
-
except EnvironmentError as e:
|
254 |
-
return f"Error loading model: {e}"
|
255 |
|
256 |
# Generate the code
|
257 |
input_text = f"""
|
@@ -275,120 +148,63 @@ def generate_code(idea):
|
|
275 |
|
276 |
return generated_code
|
277 |
|
278 |
-
|
279 |
# Streamlit App
|
280 |
st.title("CodeCraft: Your AI-Powered Development Toolkit")
|
281 |
|
282 |
-
#
|
283 |
-
st.
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
st.
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
# Sentiment Analysis Tool
|
322 |
-
st.subheader("Sentiment Analysis")
|
323 |
-
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
324 |
-
if st.button("Analyze Sentiment"):
|
325 |
-
sentiment = sentiment_analysis(sentiment_text)
|
326 |
-
st.write(f"Sentiment: {sentiment}")
|
327 |
-
|
328 |
-
# Text Translation Tool
|
329 |
-
st.subheader("Translate Text")
|
330 |
-
translation_text = st.text_area("Enter text to translate:")
|
331 |
-
target_language = st.text_input("Enter target language code (e.g., 'fr' for French):")
|
332 |
-
if st.button("Translate"):
|
333 |
-
translated_text = translate_text(translation_text, target_language)
|
334 |
-
st.write(f"Translated Text: {translated_text}")
|
335 |
-
|
336 |
-
# Code Generation
|
337 |
-
st.subheader("Code Generation")
|
338 |
-
code_idea = st.text_input("Enter your code idea:")
|
339 |
-
if st.button("Generate Code"):
|
340 |
generated_code = generate_code(code_idea)
|
341 |
st.code(generated_code, language="python")
|
|
|
|
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
358 |
-
if st.button("Add Code"):
|
359 |
-
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
360 |
-
st.success(add_code_status)
|
361 |
-
|
362 |
-
# Terminal Interface with Project Context
|
363 |
-
st.subheader("Terminal (Workspace Context)")
|
364 |
-
terminal_input = st.text_input("Enter a command within the workspace:")
|
365 |
-
if st.button("Run Command"):
|
366 |
-
terminal_output = terminal_interface(terminal_input, project_name)
|
367 |
-
st.code(terminal_output, language="bash")
|
368 |
-
|
369 |
-
# Chat Interface for Guidance
|
370 |
-
st.subheader("Chat with CodeCraft for Guidance")
|
371 |
-
chat_input = st.text_area("Enter your message for guidance:")
|
372 |
-
if st.button("Get Guidance"):
|
373 |
-
chat_response = chat_interface(chat_input)
|
374 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
375 |
-
st.write(f"CodeCraft: {chat_response}")
|
376 |
-
|
377 |
-
# Display Chat History
|
378 |
-
st.subheader("Chat History")
|
379 |
-
for user_input, response in st.session_state.chat_history:
|
380 |
-
st.write(f"User: {user_input}")
|
381 |
-
st.write(f"CodeCraft: {response}")
|
382 |
-
|
383 |
-
# Display Terminal History
|
384 |
-
st.subheader("Terminal History")
|
385 |
-
for command, output in st.session_state.terminal_history:
|
386 |
-
st.write(f"Command: {command}")
|
387 |
-
st.code(output, language="bash")
|
388 |
-
|
389 |
-
# Display Projects and Files
|
390 |
-
st.subheader("Workspace Projects")
|
391 |
-
for project, details in st.session_state.workspace_projects.items():
|
392 |
-
st.write(f"Project: {project}")
|
393 |
-
for file in details['files']:
|
394 |
-
st.write(f" - {file}")
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
4 |
+
import random
|
5 |
+
import string
|
6 |
+
from huggingface_hub import cached_download, hf_hub_url
|
7 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
8 |
import black
|
9 |
+
import pylint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define functions for each feature
|
12 |
|
|
|
20 |
Returns:
|
21 |
The chatbot's response.
|
22 |
"""
|
23 |
+
# Load the appropriate language model from Hugging Face
|
24 |
+
model_name = 'google/flan-t5-xl' # Choose a suitable model
|
25 |
+
model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json')
|
26 |
+
model_path = cached_download(model_url)
|
27 |
+
generator = pipeline('text-generation', model=model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Generate chatbot response
|
30 |
+
response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']
|
|
|
|
|
|
|
31 |
return response
|
32 |
|
|
|
33 |
# 2. Terminal
|
34 |
+
def terminal_interface(command):
|
35 |
"""Executes commands in the terminal.
|
36 |
|
37 |
Args:
|
38 |
command: User's command.
|
|
|
39 |
|
40 |
Returns:
|
41 |
The terminal output.
|
|
|
44 |
try:
|
45 |
process = subprocess.run(command.split(), capture_output=True, text=True)
|
46 |
output = process.stdout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
except Exception as e:
|
48 |
+
output = f'Error: {e}'
|
49 |
return output
|
50 |
|
|
|
51 |
# 3. Code Editor
|
52 |
def code_editor_interface(code):
|
53 |
"""Provides code completion, formatting, and linting in the code editor.
|
|
|
66 |
|
67 |
# Lint code using pylint
|
68 |
try:
|
69 |
+
pylint_output = pylint.run(formatted_code, output=None)
|
70 |
+
lint_results = pylint_output.linter.stats.get('global_note', 0)
|
71 |
+
lint_message = f"Pylint score: {lint_results:.2f}"
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
lint_message = f"Pylint error: {e}"
|
74 |
|
75 |
return formatted_code, lint_message
|
76 |
|
|
|
77 |
# 4. Workspace
|
78 |
def workspace_interface(project_name):
|
79 |
"""Manages projects, files, and resources in the workspace.
|
|
|
84 |
Returns:
|
85 |
Project creation status.
|
86 |
"""
|
|
|
87 |
# Create project directory
|
88 |
try:
|
89 |
+
os.makedirs(os.path.join('projects', project_name))
|
90 |
+
status = f'Project \"{project_name}\" created successfully.'
|
|
|
|
|
|
|
|
|
91 |
except FileExistsError:
|
92 |
+
status = f'Project \"{project_name}\" already exists.'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return status
|
94 |
|
|
|
95 |
# 5. AI-Infused Tools
|
96 |
|
97 |
# Define custom AI-powered tools using Hugging Face models
|
|
|
106 |
Returns:
|
107 |
Summarized text.
|
108 |
"""
|
109 |
+
summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
|
110 |
+
summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
return summary
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
# 6. Code Generation
|
114 |
def generate_code(idea):
|
115 |
+
"""Generates code based on a given idea using the bigscience/T0_3B model.
|
116 |
|
117 |
Args:
|
118 |
idea: The idea for the code to be generated.
|
|
|
122 |
"""
|
123 |
|
124 |
# Load the code generation model
|
125 |
+
model_name = 'bigscience/T0_3B' # Choose your model
|
126 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
127 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
128 |
|
129 |
# Generate the code
|
130 |
input_text = f"""
|
|
|
148 |
|
149 |
return generated_code
|
150 |
|
|
|
151 |
# Streamlit App
|
152 |
st.title("CodeCraft: Your AI-Powered Development Toolkit")
|
153 |
|
154 |
+
# Workspace Selection
|
155 |
+
st.header("Select Workspace")
|
156 |
+
project_name = st.selectbox("Choose a project", os.listdir('projects'))
|
157 |
+
|
158 |
+
# Chat Interface
|
159 |
+
st.header("Chat with CodeCraft")
|
160 |
+
chat_input = st.text_area("Enter your message:")
|
161 |
+
if st.button("Send"):
|
162 |
+
chat_response = chat_interface(chat_input)
|
163 |
+
st.write(f"CodeCraft: {chat_response}")
|
164 |
+
|
165 |
+
# Terminal Interface
|
166 |
+
st.header("Terminal")
|
167 |
+
terminal_input = st.text_input("Enter a command:")
|
168 |
+
if st.button("Run"):
|
169 |
+
terminal_output = terminal_interface(terminal_input)
|
170 |
+
st.code(terminal_output, language="bash")
|
171 |
+
|
172 |
+
# Code Editor Interface
|
173 |
+
st.header("Code Editor")
|
174 |
+
code_editor = st.text_area("Write your code:", language="python", height=300)
|
175 |
+
if st.button("Format & Lint"):
|
176 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
177 |
+
st.code(formatted_code, language="python")
|
178 |
+
st.info(lint_message)
|
179 |
+
|
180 |
+
# AI-Infused Tools
|
181 |
+
st.header("AI-Powered Tools")
|
182 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
183 |
+
if st.button("Summarize"):
|
184 |
+
summary = summarize_text(text_to_summarize)
|
185 |
+
st.write(f"Summary: {summary}")
|
186 |
+
|
187 |
+
# Code Generation
|
188 |
+
st.header("Code Generation")
|
189 |
+
code_idea = st.text_input("Enter your code idea:")
|
190 |
+
if st.button("Generate Code"):
|
191 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
generated_code = generate_code(code_idea)
|
193 |
st.code(generated_code, language="python")
|
194 |
+
except Exception as e:
|
195 |
+
st.error(f"Error generating code: {e}")
|
196 |
|
197 |
+
# Launch Chat App
|
198 |
+
if st.button("Launch Chat App"):
|
199 |
+
# Get the current working directory
|
200 |
+
cwd = os.getcwd()
|
201 |
+
|
202 |
+
# Construct the command to launch the chat app
|
203 |
+
command = f"cd projects/{project_name} && streamlit run chat_app.py"
|
204 |
+
|
205 |
+
# Execute the command
|
206 |
+
try:
|
207 |
+
process = subprocess.run(command.split(), capture_output=True, text=True)
|
208 |
+
st.write(f"Chat app launched successfully!")
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"Error launching chat app: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|