|
import subprocess |
|
import streamlit as st |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
import black |
|
import os |
|
from pylint import lint |
|
from io import StringIO |
|
|
|
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" |
|
PROJECT_ROOT = "projects" |
|
AGENT_DIRECTORY = "agents" |
|
|
|
|
|
if 'chat_history' not in st.session_state: |
|
st.session_state.chat_history = [] |
|
if 'terminal_history' not in st.session_state: |
|
st.session_state.terminal_history = [] |
|
if 'workspace_projects' not in st.session_state: |
|
st.session_state.workspace_projects = {} |
|
if 'available_agents' not in st.session_state: |
|
st.session_state.available_agents = [] |
|
if 'current_state' not in st.session_state: |
|
st.session_state.current_state = { |
|
'toolbox': {}, |
|
'workspace_chat': {} |
|
} |
|
|
|
|
|
class AIAgent: |
|
def __init__(self, name, description, skills): |
|
self.name = name |
|
self.description = description |
|
self.skills = skills |
|
|
|
def create_agent_prompt(self): |
|
skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) |
|
agent_prompt = f""" |
|
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: |
|
{skills_str} |
|
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. |
|
""" |
|
return agent_prompt |
|
|
|
def autonomous_build(self, chat_history, workspace_projects): |
|
""" |
|
Autonomous build logic. |
|
For now, it provides a simple summary and suggests the next step. |
|
""" |
|
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) |
|
summary += "\n\nWorkspace Projects:\n" + "\n".join( |
|
[f"{p}: {details}" for p, details in workspace_projects.items()]) |
|
|
|
next_step = "Based on the current state, the next logical step is to implement the main application logic." |
|
|
|
return summary, next_step |
|
|
|
|
|
def save_agent_to_file(agent): |
|
"""Saves the agent's information to files.""" |
|
if not os.path.exists(AGENT_DIRECTORY): |
|
os.makedirs(AGENT_DIRECTORY) |
|
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") |
|
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt") |
|
with open(file_path, "w") as file: |
|
file.write(agent.create_agent_prompt()) |
|
with open(config_path, "w") as file: |
|
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") |
|
st.session_state.available_agents.append(agent.name) |
|
|
|
|
|
|
|
|
|
|
|
def load_agent_prompt(agent_name): |
|
"""Loads an agent prompt from a file.""" |
|
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") |
|
if os.path.exists(file_path): |
|
with open(file_path, "r") as file: |
|
agent_prompt = file.read() |
|
return agent_prompt |
|
else: |
|
return None |
|
|
|
|
|
def create_agent_from_text(name, text): |
|
"""Creates an AI agent from the provided text input.""" |
|
skills = text.split('\n') |
|
agent = AIAgent(name, "AI agent created from text input.", skills) |
|
save_agent_to_file(agent) |
|
return agent.create_agent_prompt() |
|
|
|
|
|
def chat_interface_with_agent(input_text, agent_name): |
|
agent_prompt = load_agent_prompt(agent_name) |
|
if agent_prompt is None: |
|
return f"Agent {agent_name} not found." |
|
|
|
|
|
model_name = "gpt2" |
|
try: |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
except EnvironmentError as e: |
|
return f"Error loading model: {e}" |
|
|
|
|
|
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:" |
|
max_input_length = 900 |
|
input_ids = tokenizer.encode(combined_input, return_tensors="pt") |
|
if input_ids.shape[1] > max_input_length: |
|
input_ids = input_ids[:, :max_input_length] |
|
|
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=50, |
|
num_return_sequences=1, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
|
|
def chat_interface(input_text): |
|
|
|
model_name = "gpt2" |
|
try: |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
except EnvironmentError as e: |
|
return f"Error loading model: {e}" |
|
|
|
|
|
outputs = generator(input_text, max_new_tokens=50, num_return_sequences=1, do_sample=True) |
|
response = outputs[0]['generated_text'] |
|
return response |
|
|
|
|
|
def workspace_interface(project_name): |
|
"""Manages project creation.""" |
|
project_path = os.path.join(PROJECT_ROOT, project_name) |
|
if not os.path.exists(PROJECT_ROOT): |
|
os.makedirs(PROJECT_ROOT) |
|
if not os.path.exists(project_path): |
|
os.makedirs(project_path) |
|
st.session_state.workspace_projects[project_name] = {"files": []} |
|
st.session_state.current_state['workspace_chat']['project_name'] = project_name |
|
|
|
|
|
return f"Project {project_name} created successfully." |
|
else: |
|
return f"Project {project_name} already exists." |
|
|
|
|
|
def add_code_to_workspace(project_name, code, file_name): |
|
"""Adds code to a file in the specified project.""" |
|
project_path = os.path.join(PROJECT_ROOT, project_name) |
|
if os.path.exists(project_path): |
|
file_path = os.path.join(project_path, file_name) |
|
with open(file_path, "w") as file: |
|
file.write(code) |
|
st.session_state.workspace_projects[project_name]["files"].append(file_name) |
|
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code} |
|
|
|
|
|
return f"Code added to {file_name} in project {project_name} successfully." |
|
else: |
|
return f"Project {project_name} does not exist." |
|
|
|
def terminal_interface(command, project_name=None): |
|
"""Executes commands in the terminal, optionally within a project's directory.""" |
|
if project_name: |
|
project_path = os.path.join(PROJECT_ROOT, project_name) |
|
if not os.path.exists(project_path): |
|
return f"Project {project_name} does not exist." |
|
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True) |
|
else: |
|
result = subprocess.run(command, shell=True, capture_output=True, text=True) |
|
|
|
if result.returncode == 0: |
|
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout |
|
return result.stdout |
|
else: |
|
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr |
|
return result.stderr |
|
|
|
|
|
def summarize_text(text): |
|
"""Summarizes text using a Hugging Face pipeline.""" |
|
summarizer = pipeline("summarization") |
|
summary = summarizer(text, max_length=100, min_length=25, do_sample=False) |
|
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text'] |
|
return summary[0]['summary_text'] |
|
|
|
|
|
def sentiment_analysis(text): |
|
"""Analyzes sentiment of text using a Hugging Face pipeline.""" |
|
analyzer = pipeline("sentiment-analysis") |
|
sentiment = analyzer(text) |
|
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0] |
|
return sentiment[0] |
|
|
|
|
|
def code_editor_interface(code): |
|
"""Formats and lints Python code.""" |
|
try: |
|
formatted_code = black.format_str(code, mode=black.FileMode()) |
|
lint_result = StringIO() |
|
lint.Run([ |
|
'--disable=C0114,C0115,C0116', |
|
'--output-format=text', |
|
'--reports=n', |
|
'-' |
|
]) |
|
lint_message = lint_result.getvalue() |
|
return formatted_code, lint_message |
|
except Exception as e: |
|
return code, f"Error formatting or linting code: {e}" |
|
|
|
|
|
def translate_code(code, input_language, output_language): |
|
"""Translates code between programming languages.""" |
|
try: |
|
translator = pipeline("translation", model=f"{input_language}-to-{output_language}") |
|
translated_code = translator(code, max_length=10000)[0]['translation_text'] |
|
st.session_state.current_state['toolbox']['translated_code'] = translated_code |
|
return translated_code |
|
except Exception as e: |
|
return f"Error translating code: {e}" |
|
|
|
|
|
def generate_code(code_idea): |
|
"""Generates code from a user idea using a Hugging Face pipeline.""" |
|
try: |
|
generator = pipeline('text-generation', model='gpt2') |
|
generated_code = generator(f"```python\n{code_idea}\n```", max_length=1000, num_return_sequences=1)[0][ |
|
'generated_text'] |
|
|
|
|
|
start_index = generated_code.find("```python") + len("```python") |
|
end_index = generated_code.find("```", start_index) |
|
if start_index != -1 and end_index != -1: |
|
generated_code = generated_code[start_index:end_index].strip() |
|
|
|
st.session_state.current_state['toolbox']['generated_code'] = generated_code |
|
return generated_code |
|
except Exception as e: |
|
return f"Error generating code: {e}" |
|
|
|
|
|
def commit_and_push_changes(commit_message): |
|
"""(Optional) Commits and pushes changes. |
|
Needs to be configured for your Hugging Face repository. |
|
""" |
|
commands = [ |
|
"git add .", |
|
f"git commit -m '{commit_message}'", |
|
"git push" |
|
] |
|
for command in commands: |
|
result = subprocess.run(command, shell=True, capture_output=True, text=True) |
|
if result.returncode != 0: |
|
st.error(f"Error executing command '{command}': {result.stderr}") |
|
break |
|
|
|
|
|
|
|
st.title("AI Agent Creator") |
|
|
|
|
|
st.sidebar.title("Navigation") |
|
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) |
|
|
|
if app_mode == "AI Agent Creator": |
|
st.header("Create an AI Agent from Text") |
|
agent_name = st.text_input("Enter agent name:") |
|
text_input = st.text_area("Enter skills (one per line):") |
|
if st.button("Create Agent"): |
|
agent_prompt = create_agent_from_text(agent_name, text_input) |
|
st.success(f"Agent '{agent_name}' created and saved successfully.") |
|
st.session_state.available_agents.append(agent_name) |
|
|
|
elif app_mode == "Tool Box": |
|
st.header("AI-Powered Tools") |
|
|
|
st.subheader("Chat with CodeCraft") |
|
chat_input = st.text_area("Enter your message:") |
|
if st.button("Send"): |
|
if chat_input.startswith("@"): |
|
agent_name = chat_input.split(" ")[0][1:] |
|
chat_input = " ".join(chat_input.split(" ")[1:]) |
|
chat_response = chat_interface_with_agent(chat_input, agent_name) |
|
else: |
|
chat_response = chat_interface(chat_input) |
|
st.session_state.chat_history.append((chat_input, chat_response)) |
|
st.write(f"CodeCraft: {chat_response}") |
|
|
|
st.subheader("Terminal") |
|
terminal_input = st.text_input("Enter a command:") |
|
if st.button("Run"): |
|
terminal_output = terminal_interface(terminal_input) |
|
st.session_state.terminal_history.append((terminal_input, terminal_output)) |
|
st.code(terminal_output, language="bash") |
|
|
|
st.subheader("Code Editor") |
|
code_editor = st.text_area("Write your code:", height=300) |
|
if st.button("Format & Lint"): |
|
formatted_code, lint_message = code_editor_interface(code_editor) |
|
st.code(formatted_code, language="python") |
|
st.info(lint_message) |
|
|
|
st.subheader("Summarize Text") |
|
text_to_summarize = st.text_area("Enter text to summarize:") |
|
if st.button("Summarize"): |
|
summary = summarize_text(text_to_summarize) |
|
st.write(f"Summary: {summary}") |
|
|
|
st.subheader("Sentiment Analysis") |
|
sentiment_text = st.text_area("Enter text for sentiment analysis:") |
|
if st.button("Analyze Sentiment"): |
|
sentiment = sentiment_analysis(sentiment_text) |
|
st.write(f"Sentiment: {sentiment}") |
|
|
|
st.subheader("Translate Code") |
|
code_to_translate = st.text_area("Enter code to translate:") |
|
source_language = st.selectbox("Source Language", ["en", "fr", "de", "es", "zh", "ja", "ko", "ru"]) |
|
target_language = st.selectbox("Target Language", ["en", "fr", "de", "es", "zh", "ja", "ko", "ru"]) |
|
if st.button("Translate Code"): |
|
translated_code = translate_code(code_to_translate, source_language, target_language) |
|
st.code(translated_code, language=target_language.lower()) |
|
|
|
st.subheader("Code Generation") |
|
code_idea = st.text_input("Enter your code idea:") |
|
if st.button("Generate Code"): |
|
generated_code = generate_code(code_idea) |
|
st.code(generated_code, language="python") |
|
|
|
st.subheader("Preset Commands") |
|
preset_commands = { |
|
"Create a new project": "create_project('project_name')", |
|
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')", |
|
"Run terminal command": "terminal_interface('command', 'project_name')", |
|
"Generate code": "generate_code('code_idea')", |
|
"Summarize text": "summarize_text('text')", |
|
"Analyze sentiment": "sentiment_analysis('text')", |
|
"Translate code": "translate_code('code', 'source_language', 'target_language')", |
|
} |
|
for command_name, command in preset_commands.items(): |
|
st.write(f"{command_name}: `{command}`") |
|
|
|
elif app_mode == "Workspace Chat App": |
|
st.header("Workspace Chat App") |
|
|
|
st.subheader("Create a New Project") |
|
project_name = st.text_input("Enter project name:") |
|
if st.button("Create Project"): |
|
workspace_status = workspace_interface(project_name) |
|
st.success(workspace_status) |
|
|
|
st.subheader("Add Code to Workspace") |
|
code_to_add = st.text_area("Enter code to add to workspace:") |
|
file_name = st.text_input("Enter file name (e.g. 'app.py'):") |
|
if st.button("Add Code"): |
|
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) |
|
st.success(add_code_status) |
|
|
|
st.subheader("Terminal (Workspace Context)") |
|
terminal_input = st.text_input("Enter a command within the workspace:") |
|
if st.button("Run Command"): |
|
terminal_output = terminal_interface(terminal_input, project_name) |
|
st.code(terminal_output, language="bash") |
|
|
|
st.subheader("Chat with CodeCraft for Guidance") |
|
chat_input = st.text_area("Enter your message for guidance:") |
|
if st.button("Get Guidance"): |
|
chat_response = chat_interface(chat_input) |
|
st.session_state.chat_history.append((chat_input, chat_response)) |
|
st.write(f"CodeCraft: {chat_response}") |
|
|
|
st.subheader("Chat History") |
|
for user_input, response in st.session_state.chat_history: |
|
st.write(f"User: {user_input}") |
|
st.write(f"CodeCraft: {response}") |
|
|
|
st.subheader("Terminal History") |
|
for command, output in st.session_state.terminal_history: |
|
st.write(f"Command: {command}") |
|
st.code(output, language="bash") |
|
|
|
st.subheader("Workspace Projects") |
|
for project, details in st.session_state.workspace_projects.items(): |
|
st.write(f"Project: {project}") |
|
for file in details['files']: |
|
st.write(f" - {file}") |
|
|
|
st.subheader("Chat with AI Agents") |
|
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) |
|
agent_chat_input = st.text_area("Enter your message for the agent:") |
|
if st.button("Send to Agent"): |
|
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent) |
|
st.session_state.chat_history.append((agent_chat_input, agent_chat_response)) |
|
st.write(f"{selected_agent}: {agent_chat_response}") |
|
|
|
st.subheader("Automate Build Process") |
|
if st.button("Automate"): |
|
if selected_agent: |
|
agent = AIAgent(selected_agent, "", []) |
|
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects) |
|
st.write("Autonomous Build Summary:") |
|
st.write(summary) |
|
st.write("Next Step:") |
|
st.write(next_step) |
|
else: |
|
st.warning("Please select an AI agent first.") |
|
|