Spaces:
Running
Running
File size: 17,101 Bytes
6c9bc25 661f7ab 6c9bc25 5dbe18c 6c9bc25 dd86def 6c9bc25 dd86def 6c9bc25 c3b5b15 6c9bc25 5dbe18c 6c9bc25 c3b5b15 5dbe18c c3b5b15 6c9bc25 c3b5b15 6c9bc25 5dbe18c 6c9bc25 c3b5b15 6c9bc25 c3b5b15 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 c3b5b15 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 c3b5b15 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 3dce557 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 a35ba6f 3dce557 6c9bc25 5dbe18c 6c9bc25 a35ba6f 3dce557 6c9bc25 5dbe18c 6c9bc25 a35ba6f 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 10e82e0 6c9bc25 a35ba6f 6c9bc25 5dbe18c a35ba6f 6c9bc25 a35ba6f 6c9bc25 a35ba6f 6c9bc25 5dbe18c a35ba6f 5dbe18c 6c9bc25 5dbe18c 6c9bc25 a35ba6f 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c 6c9bc25 5dbe18c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
import os
from pylint import lint
from io import StringIO
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
class AIAgent:
def __init__(self, name, description, skills):
self.name = name
self.description = description
self.skills = skills
def create_agent_prompt(self):
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history, workspace_projects):
"""
Autonomous build logic.
For now, it provides a simple summary and suggests the next step.
"""
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join(
[f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
def save_agent_to_file(agent):
"""Saves the agent's information to files."""
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
with open(config_path, "w") as file:
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
st.session_state.available_agents.append(agent.name)
# (Optional) Commit and push if you have set up Hugging Face integration.
# commit_and_push_changes(f"Add agent {agent.name}")
def load_agent_prompt(agent_name):
"""Loads an agent prompt from a file."""
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name, text):
"""Creates an AI agent from the provided text input."""
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
# Load the GPT-2 model
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Combine agent prompt and user input (truncate if necessary)
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
max_input_length = 900
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
# Generate response
outputs = model.generate(
input_ids,
max_new_tokens=50,
num_return_sequences=1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Basic chat interface (no agent)
def chat_interface(input_text):
# Load the GPT-2 model
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Generate response
outputs = generator(input_text, max_new_tokens=50, num_return_sequences=1, do_sample=True)
response = outputs[0]['generated_text']
return response
def workspace_interface(project_name):
"""Manages project creation."""
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(PROJECT_ROOT):
os.makedirs(PROJECT_ROOT)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {"files": []}
st.session_state.current_state['workspace_chat']['project_name'] = project_name
# (Optional) Commit and push if you have set up Hugging Face integration.
# commit_and_push_changes(f"Create project {project_name}")
return f"Project {project_name} created successfully."
else:
return f"Project {project_name} already exists."
def add_code_to_workspace(project_name, code, file_name):
"""Adds code to a file in the specified project."""
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]["files"].append(file_name)
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
# (Optional) Commit and push if you have set up Hugging Face integration.
# commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
return f"Code added to {file_name} in project {project_name} successfully."
else:
return f"Project {project_name} does not exist."
def terminal_interface(command, project_name=None):
"""Executes commands in the terminal, optionally within a project's directory."""
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
return result.stdout
else:
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
return result.stderr
def summarize_text(text):
"""Summarizes text using a Hugging Face pipeline."""
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=100, min_length=25, do_sample=False)
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
return summary[0]['summary_text']
def sentiment_analysis(text):
"""Analyzes sentiment of text using a Hugging Face pipeline."""
analyzer = pipeline("sentiment-analysis")
sentiment = analyzer(text)
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
return sentiment[0]
def code_editor_interface(code):
"""Formats and lints Python code."""
try:
formatted_code = black.format_str(code, mode=black.FileMode())
lint_result = StringIO()
lint.Run([
'--disable=C0114,C0115,C0116',
'--output-format=text',
'--reports=n',
'-'
])
lint_message = lint_result.getvalue()
return formatted_code, lint_message
except Exception as e:
return code, f"Error formatting or linting code: {e}"
def translate_code(code, input_language, output_language):
"""Translates code between programming languages."""
try:
translator = pipeline("translation", model=f"{input_language}-to-{output_language}")
translated_code = translator(code, max_length=10000)[0]['translation_text']
st.session_state.current_state['toolbox']['translated_code'] = translated_code
return translated_code
except Exception as e:
return f"Error translating code: {e}"
def generate_code(code_idea):
"""Generates code from a user idea using a Hugging Face pipeline."""
try:
generator = pipeline('text-generation', model='gpt2')
generated_code = generator(f"```python\n{code_idea}\n```", max_length=1000, num_return_sequences=1)[0][
'generated_text']
# Extract code from the generated text
start_index = generated_code.find("```python") + len("```python")
end_index = generated_code.find("```", start_index)
if start_index != -1 and end_index != -1:
generated_code = generated_code[start_index:end_index].strip()
st.session_state.current_state['toolbox']['generated_code'] = generated_code
return generated_code
except Exception as e:
return f"Error generating code: {e}"
def commit_and_push_changes(commit_message):
"""(Optional) Commits and pushes changes.
Needs to be configured for your Hugging Face repository.
"""
commands = [
"git add .",
f"git commit -m '{commit_message}'",
"git push"
]
for command in commands:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
st.error(f"Error executing command '{command}': {result.stderr}")
break
# --- Streamlit App ---
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Agent Creator":
st.header("Create an AI Agent from Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
elif app_mode == "Tool Box":
st.header("AI-Powered Tools")
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
if chat_input.startswith("@"):
agent_name = chat_input.split(" ")[0][1:]
chat_input = " ".join(chat_input.split(" ")[1:])
chat_response = chat_interface_with_agent(chat_input, agent_name)
else:
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.selectbox("Source Language", ["en", "fr", "de", "es", "zh", "ja", "ko", "ru"])
target_language = st.selectbox("Target Language", ["en", "fr", "de", "es", "zh", "ja", "ko", "ru"])
if st.button("Translate Code"):
translated_code = translate_code(code_to_translate, source_language, target_language)
st.code(translated_code, language=target_language.lower())
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
st.subheader("Preset Commands")
preset_commands = {
"Create a new project": "create_project('project_name')",
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
"Run terminal command": "terminal_interface('command', 'project_name')",
"Generate code": "generate_code('code_idea')",
"Summarize text": "summarize_text('text')",
"Analyze sentiment": "sentiment_analysis('text')",
"Translate code": "translate_code('code', 'source_language', 'target_language')",
}
for command_name, command in preset_commands.items():
st.write(f"{command_name}: `{command}`")
elif app_mode == "Workspace Chat App":
st.header("Workspace Chat App")
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"CodeCraft: {response}")
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent}: {agent_chat_response}")
st.subheader("Automate Build Process")
if st.button("Automate"):
if selected_agent:
agent = AIAgent(selected_agent, "", [])
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
else:
st.warning("Please select an AI agent first.")
|