Spaces:
Running
Running
import os | |
import subprocess | |
import random | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from safe_search import safe_search | |
from i_search import google | |
from i_search import i_search as i_s | |
from agent import ( | |
ACTION_PROMPT, | |
ADD_PROMPT, | |
COMPRESS_HISTORY_PROMPT, | |
LOG_PROMPT, | |
LOG_RESPONSE, | |
MODIFY_PROMPT, | |
PREFIX, | |
SEARCH_QUERY, | |
READ_PROMPT, | |
TASK_PROMPT, | |
UNDERSTAND_TEST_RESULTS_PROMPT, | |
) | |
from utils import parse_action, parse_file_content, read_python_module_structure | |
from datetime import datetime | |
now = datetime.now() | |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") | |
client = InferenceClient( | |
"mistralai/Mixtral-8x7B-Instruct-v0.1" | |
) | |
############################################ | |
VERBOSE = True | |
MAX_HISTORY = 100 | |
#MODEL = "gpt-3.5-turbo" # "gpt-4" | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def run_gpt( | |
prompt_template, | |
stop_tokens, | |
max_tokens, | |
purpose, | |
**prompt_kwargs, | |
): | |
seed = random.randint(1,1111111111111111) | |
print (seed) | |
generate_kwargs = dict( | |
temperature=1.0, | |
max_new_tokens=2096, | |
top_p=0.99, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = PREFIX.format( | |
date_time_str=date_time_str, | |
purpose=purpose, | |
safe_search=safe_search, | |
) + prompt_template.format(**prompt_kwargs) | |
if VERBOSE: | |
print(LOG_PROMPT.format(content)) | |
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
#formatted_prompt = format_prompt(f'{content}', history) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
if VERBOSE: | |
print(LOG_RESPONSE.format(resp)) | |
return resp | |
def compress_history(purpose, task, history, directory): | |
resp = run_gpt( | |
COMPRESS_HISTORY_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=512, | |
purpose=purpose, | |
task=task, | |
history=history, | |
) | |
history = "observation: {}\n".format(resp) | |
return history | |
def call_search(purpose, task, history, directory, action_input): | |
print("CALLING SEARCH") | |
try: | |
if "http" in action_input: | |
if "<" in action_input: | |
action_input = action_input.strip("<") | |
if ">" in action_input: | |
action_input = action_input.strip(">") | |
response = i_s(action_input) | |
#response = google(search_return) | |
print(response) | |
history += "observation: search result is: {}\n".format(response) | |
else: | |
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n" | |
except Exception as e: | |
history += "observation: {}'\n".format(e) | |
return "MAIN", None, history, task | |
def call_main(purpose, task, history, directory, action_input): | |
resp = run_gpt( | |
ACTION_PROMPT, | |
stop_tokens=["observation:", "task:", "action:","thought:"], | |
max_tokens=2096, | |
purpose=purpose, | |
task=task, | |
history=history, | |
) | |
lines = resp.strip().strip("\n").split("\n") | |
for line in lines: | |
if line == "": | |
continue | |
if line.startswith("thought: "): | |
history += "{}\n".format(line) | |
elif line.startswith("action: "): | |
action_name, action_input = parse_action(line) | |
print (f'ACTION_NAME :: {action_name}') | |
print (f'ACTION_INPUT :: {action_input}') | |
history += "{}\n".format(line) | |
if "COMPLETE" in action_name or "COMPLETE" in action_input: | |
task = "END" | |
return action_name, action_input, history, task | |
else: | |
return action_name, action_input, history, task | |
else: | |
history += "{}\n".format(line) | |
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line) | |
#return action_name, action_input, history, task | |
#assert False, "unknown action: {}".format(line) | |
return "MAIN", None, history, task | |
def call_set_task(purpose, task, history, directory, action_input): | |
task = run_gpt( | |
TASK_PROMPT, | |
stop_tokens=[], | |
max_tokens=64, | |
purpose=purpose, | |
task=task, | |
history=history, | |
).strip("\n") | |
history += "observation: task has been updated to: {}\n".format(task) | |
return "MAIN", None, history, task | |
def end_fn(purpose, task, history, directory, action_input): | |
task = "END" | |
return "COMPLETE", "COMPLETE", history, task | |
NAME_TO_FUNC = { | |
"MAIN": call_main, | |
"UPDATE-TASK": call_set_task, | |
"SEARCH": call_search, | |
"COMPLETE": end_fn, | |
} | |
def run_action(purpose, task, history, directory, action_name, action_input): | |
print(f'action_name::{action_name}') | |
try: | |
if "RESPONSE" in action_name or "COMPLETE" in action_name: | |
action_name="COMPLETE" | |
task="END" | |
return action_name, "COMPLETE", history, task | |
# compress the history when it is long | |
if len(history.split("\n")) > MAX_HISTORY: | |
if VERBOSE: | |
print("COMPRESSING HISTORY") | |
history = compress_history(purpose, task, history, directory) | |
if not action_name in NAME_TO_FUNC: | |
action_name="MAIN" | |
if action_name == "" or action_name == None: | |
action_name="MAIN" | |
assert action_name in NAME_TO_FUNC | |
print("RUN: ", action_name, action_input) | |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) | |
except Exception as e: | |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" | |
return "MAIN", None, history, task | |
def run(purpose,history): | |
#print(purpose) | |
#print(hist) | |
task=None | |
directory="./" | |
if history: | |
history=str(history).strip("[]") | |
if not history: | |
history = "" | |
action_name = "UPDATE-TASK" if task is None else "MAIN" | |
action_input = None | |
while True: | |
print("") | |
print("") | |
print("---") | |
print("purpose:", purpose) | |
print("task:", task) | |
print("---") | |
print(history) | |
print("---") | |
action_name, action_input, history, task = run_action( | |
purpose, | |
task, | |
history, | |
directory, | |
action_name, | |
action_input, | |
) | |
yield (history) | |
#yield ("",[(purpose,history)]) | |
if task == "END": | |
return (history) | |
#return ("", [(purpose,history)]) | |
################################################ | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
agents =[ | |
"WEB_DEV", | |
"AI_SYSTEM_PROMPT", | |
"PYTHON_CODE_DEV" | |
] | |
def generate( | |
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
seed = random.randint(1,1111111111111111) | |
agent=prompts.WEB_DEV | |
if agent_name == "WEB_DEV": | |
agent = prompts.WEB_DEV | |
if agent_name == "AI_SYSTEM_PROMPT": | |
agent = prompts.AI_SYSTEM_PROMPT | |
if agent_name == "PYTHON_CODE_DEV": | |
agent = prompts.PYTHON_CODE_DEV | |
system_prompt=agent | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=seed, | |
) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
additional_inputs=[ | |
gr.Dropdown( | |
label="Agents", | |
choices=[s for s in agents], | |
value=agents[0], | |
interactive=True, | |
), | |
gr.Textbox( | |
label="System Prompt", | |
max_lines=1, | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=1048*10, | |
minimum=0, | |
maximum=1048*10, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
), | |
] | |
examples=[ | |
["Create a basic Python web app using Flask.", None, None, None, None, None, ], | |
["Build a simple Streamlit app to display a data visualization.", None, None, None, None, None, ], | |
["I need a Gradio interface for a machine learning model that takes an image as input and outputs a classification.", None, None, None, None, None, ], | |
["Generate a Python script to scrape data from a website.", None, None, None, None, None, ], | |
["I'm building a React app. How can I use Axios to make API calls?", None, None, None, None, None, ], | |
["Write a Python function to read data from a CSV file.", None, None, None, None, None, ], | |
["I want to deploy my Flask app to Heroku.", None, None, None, None, None, ], | |
["Explain the difference between Git and GitHub.", None, None, None, None, None, ], | |
["How can I use Docker to containerize my Python app?", None, None, None, None, None, ], | |
["I need a simple API endpoint for my web app using Flask.", None, None, None, None, None, ], | |
["Create a function in Python to calculate the factorial of a number.", None, None, None, None, None, ], | |
] | |
''' | |
gr.ChatInterface( | |
fn=run, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test", | |
examples=examples, | |
concurrency_limit=20, | |
with gr.Blocks() as ifacea: | |
gr.HTML("""TEST""") | |
ifacea.launch() | |
).launch() | |
with gr.Blocks() as iface: | |
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
chatbot=gr.Chatbot() | |
msg = gr.Textbox() | |
with gr.Row(): | |
submit_b = gr.Button() | |
clear = gr.ClearButton([msg, chatbot]) | |
submit_b.click(run, [msg,chatbot],[msg,chatbot]) | |
msg.submit(run, [msg, chatbot], [msg, chatbot]) | |
iface.launch() | |
''' | |
gr.ChatInterface( | |
fn=run, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test", | |
examples=examples, | |
concurrency_limit=20, | |
).launch(show_api=False) | |
Implementation of Next Steps: | |
Terminal Integration: | |
Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework. | |
Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app. | |
Capture Input: Capture the user's input from the terminal and pass it to your command execution function. | |
Display Output: Display the output of the terminal commands, including both standard output and errors. | |
Code Generation: | |
LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small). | |
Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions. | |
Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code. | |
Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance. | |
Workspace Explorer: | |
Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files. | |
File Management: Implement functions to create, edit, and delete files and directories within the workspace. | |
Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace. | |
Directory Structure: Display the directory structure of the workspace using a tree-like representation. | |
Dependency Management: | |
Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file. | |
Workspace Population: Develop a function to create files and directories in the workspace based on installed packages. | |
Application Build and Launch: | |
Build Logic: Develop a function to build the web app based on the user's code and dependencies. | |
Launch Functionality: Implement a mechanism to launch the built app. | |
Error Correction: Identify and correct errors during the build and launch process. | |
Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override. | |
Recommendations, Enhancements, Optimizations, and Workflow: | |
1. LLM Selection for Code Generation: | |
* **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python. | |
* **Salesforce/CodeT5-Base:** Strong for code generation, with a focus on code summarization and translation. | |
* **Microsoft/CodeGPT-Small:** A smaller model that is suitable for code generation tasks, especially if you have limited computational resources. | |
2. Prompt Engineering for Code Generation: | |
* **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements. | |
* **Code Snippets:** If possible, include code snippets as part of the prompt to guide the LLM's code generation. | |
* **Iterative Refinement:** Use iterative prompting to refine the generated code. Start with a basic prompt and then provide feedback to the LLM to improve the code. | |
3. Workspace Exploration: | |
* **Tree-Like View:** Use a tree-like representation to display the workspace's directory structure. | |
* **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories. | |
* **Code Highlighting:** Provide code highlighting for files in the workspace to improve readability. | |
4. Dependency Management: | |
* **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts. | |
* **Automatic Updates:** Implement a mechanism to automatically update dependencies when new versions are available. | |
* **Dependency Locking:** Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds. | |
5. Application Build and Launch: | |
* **Build Tool Integration:** Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process. | |
* **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments. | |
* **Deployment Automation:** Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process. | |
6. Automated Assistance: | |
* **Error Detection and Correction:** Implement a system that can detect common coding errors and suggest corrections. | |
* **Code Completion:** Use an LLM to provide code completion suggestions as the user types. |