Spaces:
Running
Running
File size: 16,786 Bytes
a98a37e 4ebd6c7 1115ab9 c6d665e 1115ab9 c6d665e cb052d2 1115ab9 714ba23 1115ab9 cb052d2 1115ab9 cb052d2 1115ab9 714ba23 1115ab9 cb052d2 1115ab9 cb052d2 1115ab9 cb052d2 1115ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
############################################
VERBOSE = True
MAX_HISTORY = 100
#MODEL = "gpt-3.5-turbo" # "gpt-4"
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=2096,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_history(purpose, task, history, directory):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose, task, history, directory, action_input):
print("CALLING SEARCH")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
#response = google(search_return)
print(response)
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
except Exception as e:
history += "observation: {}'\n".format(e)
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:","thought:"],
max_tokens=2096,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
print (f'ACTION_NAME :: {action_name}')
print (f'ACTION_INPUT :: {action_input}')
history += "{}\n".format(line)
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
#return action_name, action_input, history, task
#assert False, "unknown action: {}".format(line)
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
print(f'action_name::{action_name}')
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name="COMPLETE"
task="END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
if VERBOSE:
print("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name="MAIN"
if action_name == "" or action_name == None:
action_name="MAIN"
assert action_name in NAME_TO_FUNC
print("RUN: ", action_name, action_input)
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
return "MAIN", None, history, task
def run(purpose,history):
#print(purpose)
#print(hist)
task=None
directory="./"
if history:
history=str(history).strip("[]")
if not history:
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
print("")
print("")
print("---")
print("purpose:", purpose)
print("task:", task)
print("---")
print(history)
print("---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
#yield ("",[(purpose,history)])
if task == "END":
return (history)
#return ("", [(purpose,history)])
################################################
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
seed = random.randint(1,1111111111111111)
agent=prompts.WEB_DEV
if agent_name == "WEB_DEV":
agent = prompts.WEB_DEV
if agent_name == "AI_SYSTEM_PROMPT":
agent = prompts.AI_SYSTEM_PROMPT
if agent_name == "PYTHON_CODE_DEV":
agent = prompts.PYTHON_CODE_DEV
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1048*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[
["Create a basic Python web app using Flask.", None, None, None, None, None, ],
["Build a simple Streamlit app to display a data visualization.", None, None, None, None, None, ],
["I need a Gradio interface for a machine learning model that takes an image as input and outputs a classification.", None, None, None, None, None, ],
["Generate a Python script to scrape data from a website.", None, None, None, None, None, ],
["I'm building a React app. How can I use Axios to make API calls?", None, None, None, None, None, ],
["Write a Python function to read data from a CSV file.", None, None, None, None, None, ],
["I want to deploy my Flask app to Heroku.", None, None, None, None, None, ],
["Explain the difference between Git and GitHub.", None, None, None, None, None, ],
["How can I use Docker to containerize my Python app?", None, None, None, None, None, ],
["I need a simple API endpoint for my web app using Flask.", None, None, None, None, None, ],
["Create a function in Python to calculate the factorial of a number.", None, None, None, None, None, ],
]
'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
examples=examples,
concurrency_limit=20,
with gr.Blocks() as ifacea:
gr.HTML("""TEST""")
ifacea.launch()
).launch()
with gr.Blocks() as iface:
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
chatbot=gr.Chatbot()
msg = gr.Textbox()
with gr.Row():
submit_b = gr.Button()
clear = gr.ClearButton([msg, chatbot])
submit_b.click(run, [msg,chatbot],[msg,chatbot])
msg.submit(run, [msg, chatbot], [msg, chatbot])
iface.launch()
'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
Implementation of Next Steps:
Terminal Integration:
Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework.
Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app.
Capture Input: Capture the user's input from the terminal and pass it to your command execution function.
Display Output: Display the output of the terminal commands, including both standard output and errors.
Code Generation:
LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small).
Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions.
Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code.
Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance.
Workspace Explorer:
Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files.
File Management: Implement functions to create, edit, and delete files and directories within the workspace.
Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace.
Directory Structure: Display the directory structure of the workspace using a tree-like representation.
Dependency Management:
Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file.
Workspace Population: Develop a function to create files and directories in the workspace based on installed packages.
Application Build and Launch:
Build Logic: Develop a function to build the web app based on the user's code and dependencies.
Launch Functionality: Implement a mechanism to launch the built app.
Error Correction: Identify and correct errors during the build and launch process.
Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override.
Recommendations, Enhancements, Optimizations, and Workflow:
1. LLM Selection for Code Generation:
* **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python.
* **Salesforce/CodeT5-Base:** Strong for code generation, with a focus on code summarization and translation.
* **Microsoft/CodeGPT-Small:** A smaller model that is suitable for code generation tasks, especially if you have limited computational resources.
2. Prompt Engineering for Code Generation:
* **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements.
* **Code Snippets:** If possible, include code snippets as part of the prompt to guide the LLM's code generation.
* **Iterative Refinement:** Use iterative prompting to refine the generated code. Start with a basic prompt and then provide feedback to the LLM to improve the code.
3. Workspace Exploration:
* **Tree-Like View:** Use a tree-like representation to display the workspace's directory structure.
* **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories.
* **Code Highlighting:** Provide code highlighting for files in the workspace to improve readability.
4. Dependency Management:
* **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts.
* **Automatic Updates:** Implement a mechanism to automatically update dependencies when new versions are available.
* **Dependency Locking:** Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds.
5. Application Build and Launch:
* **Build Tool Integration:** Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process.
* **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments.
* **Deployment Automation:** Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process.
6. Automated Assistance:
* **Error Detection and Correction:** Implement a system that can detect common coding errors and suggest corrections.
* **Code Completion:** Use an LLM to provide code completion suggestions as the user types. |