File size: 16,786 Bytes
a98a37e
4ebd6c7
1115ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d665e
1115ab9
 
 
 
 
 
 
c6d665e
cb052d2
1115ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714ba23
1115ab9
 
 
 
 
 
 
 
 
 
 
cb052d2
1115ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb052d2
1115ab9
714ba23
1115ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb052d2
1115ab9
cb052d2
1115ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb052d2
1115ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from agent import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    SEARCH_QUERY,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")

client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

############################################


VERBOSE = True
MAX_HISTORY = 100
#MODEL = "gpt-3.5-turbo"  # "gpt-4"


def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt



def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    purpose,
    **prompt_kwargs,
):
    seed = random.randint(1,1111111111111111)
    print (seed)
    generate_kwargs = dict(
        temperature=1.0,
        max_new_tokens=2096,
        top_p=0.99,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )

    
    content = PREFIX.format(
        date_time_str=date_time_str,
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp


def compress_history(purpose, task, history, directory):
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=512,
        purpose=purpose,
        task=task,
        history=history,
    )
    history = "observation: {}\n".format(resp)
    return history
    
def call_search(purpose, task, history, directory, action_input):
    print("CALLING SEARCH")
    try:
        
        if "http" in action_input:
            if "<" in action_input:
                action_input = action_input.strip("<")
            if ">" in action_input:
                action_input = action_input.strip(">")
            
            response = i_s(action_input)
            #response = google(search_return)
            print(response)
            history += "observation: search result is: {}\n".format(response)
        else:
            history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
    except Exception as e:
        history += "observation: {}'\n".format(e)
    return "MAIN", None, history, task

def call_main(purpose, task, history, directory, action_input):
    resp = run_gpt(
        ACTION_PROMPT,
        stop_tokens=["observation:", "task:", "action:","thought:"],
        max_tokens=2096,
        purpose=purpose,
        task=task,
        history=history,
    )
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
        elif line.startswith("action: "):
            
            action_name, action_input = parse_action(line)
            print (f'ACTION_NAME :: {action_name}')
            print (f'ACTION_INPUT :: {action_input}')
            
            history += "{}\n".format(line)
            if "COMPLETE" in action_name or "COMPLETE" in action_input:
                task = "END"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history += "{}\n".format(line)
            #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
            
            #return action_name, action_input, history, task
            #assert False, "unknown action: {}".format(line)
    return "MAIN", None, history, task


def call_set_task(purpose, task, history, directory, action_input):
    task = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=64,
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task

def end_fn(purpose, task, history, directory, action_input):
    task = "END"
    return "COMPLETE", "COMPLETE", history, task

NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH": call_search,
    "COMPLETE": end_fn,

}

def run_action(purpose, task, history, directory, action_name, action_input):
    print(f'action_name::{action_name}')
    try:
        if "RESPONSE" in action_name or "COMPLETE" in action_name:
            action_name="COMPLETE"
            task="END"
            return action_name, "COMPLETE", history, task
    
        # compress the history when it is long
        if len(history.split("\n")) > MAX_HISTORY:
            if VERBOSE:
                print("COMPRESSING HISTORY")
            history = compress_history(purpose, task, history, directory)
        if not action_name in NAME_TO_FUNC:
            action_name="MAIN"
        if action_name == "" or action_name == None:
            action_name="MAIN"
        assert action_name in NAME_TO_FUNC
    
        print("RUN: ", action_name, action_input)
        return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
    except Exception as e:
        history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"

        return "MAIN", None, history, task

def run(purpose,history):
    
    #print(purpose)
    #print(hist)
    task=None
    directory="./"
    if history:
        history=str(history).strip("[]")
    if not history:
        history = ""
    
    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None
    while True:
        print("")
        print("")
        print("---")
        print("purpose:", purpose)
        print("task:", task)
        print("---")
        print(history)
        print("---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            directory,
            action_name,
            action_input,
        )
        yield (history)
        #yield ("",[(purpose,history)])
        if task == "END":
            return (history)
            #return ("", [(purpose,history)])



################################################

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt
agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]
def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    seed = random.randint(1,1111111111111111)

    agent=prompts.WEB_DEV
    if agent_name == "WEB_DEV":
        agent = prompts.WEB_DEV
    if agent_name == "AI_SYSTEM_PROMPT":
        agent = prompts.AI_SYSTEM_PROMPT
    if agent_name == "PYTHON_CODE_DEV":
        agent = prompts.PYTHON_CODE_DEV        
    system_prompt=agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
        ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),


]

examples=[
    ["Create a basic Python web app using Flask.", None, None, None, None, None, ],
    ["Build a simple Streamlit app to display a data visualization.", None, None, None, None, None, ],
    ["I need a Gradio interface for a machine learning model that takes an image as input and outputs a classification.", None, None, None, None, None, ],
    ["Generate a Python script to scrape data from a website.", None, None, None, None, None, ],
    ["I'm building a React app. How can I use Axios to make API calls?", None, None, None, None, None, ],
    ["Write a Python function to read data from a CSV file.", None, None, None, None, None, ],
    ["I want to deploy my Flask app to Heroku.", None, None, None, None, None, ],
    ["Explain the difference between Git and GitHub.", None, None, None, None, None, ],
    ["How can I use Docker to containerize my Python app?", None, None, None, None, None, ],
    ["I need a simple API endpoint for my web app using Flask.", None, None, None, None, None, ],
    ["Create a function in Python to calculate the factorial of a number.", None, None, None, None, None, ],
]

'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
examples=examples,
concurrency_limit=20,
with gr.Blocks() as ifacea:
    gr.HTML("""TEST""")
ifacea.launch()
).launch()
with gr.Blocks() as iface:
    #chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    chatbot=gr.Chatbot()
    msg = gr.Textbox()
    with gr.Row():
        submit_b = gr.Button()
        clear = gr.ClearButton([msg, chatbot])
    submit_b.click(run, [msg,chatbot],[msg,chatbot])
    msg.submit(run, [msg, chatbot], [msg, chatbot])
iface.launch()
'''
gr.ChatInterface(
    fn=run,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)


Implementation of Next Steps:

Terminal Integration:

Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework.
Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app.
Capture Input: Capture the user's input from the terminal and pass it to your command execution function.
Display Output: Display the output of the terminal commands, including both standard output and errors.
Code Generation:

LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small).
Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions.
Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code.
Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance.
Workspace Explorer:

Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files.
File Management: Implement functions to create, edit, and delete files and directories within the workspace.
Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace.
Directory Structure: Display the directory structure of the workspace using a tree-like representation.
Dependency Management:

Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file.
Workspace Population: Develop a function to create files and directories in the workspace based on installed packages.
Application Build and Launch:

Build Logic: Develop a function to build the web app based on the user's code and dependencies.
Launch Functionality: Implement a mechanism to launch the built app.
Error Correction: Identify and correct errors during the build and launch process.
Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override.

Recommendations, Enhancements, Optimizations, and Workflow:

1. LLM Selection for Code Generation:
    *  **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python.
    *  **Salesforce/CodeT5-Base:**  Strong for code generation, with a focus on code summarization and translation.
    *  **Microsoft/CodeGPT-Small:**  A smaller model that is suitable for code generation tasks, especially if you have limited computational resources.

2. Prompt Engineering for Code Generation:
    *  **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements.
    *  **Code Snippets:**  If possible, include code snippets as part of the prompt to guide the LLM's code generation.
    *  **Iterative Refinement:**  Use iterative prompting to refine the generated code.  Start with a basic prompt and then provide feedback to the LLM to improve the code.

3. Workspace Exploration:
    *   **Tree-Like View:**  Use a tree-like representation to display the workspace's directory structure.
    *   **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories.
    *   **Code Highlighting:**  Provide code highlighting for files in the workspace to improve readability.

4. Dependency Management:
    *   **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts.
    *   **Automatic Updates:**  Implement a mechanism to automatically update dependencies when new versions are available.
    *   **Dependency Locking:**  Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds.

5. Application Build and Launch:
    *   **Build Tool Integration:**  Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process.
    *   **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments.
    *   **Deployment Automation:**  Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process.

6. Automated Assistance:
    *   **Error Detection and Correction:**  Implement a system that can detect common coding errors and suggest corrections.
    *   **Code Completion:**  Use an LLM to provide code completion suggestions as the user types.