Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,31 @@
|
|
| 1 |
import os
|
| 2 |
-
import sys
|
| 3 |
-
import subprocess
|
| 4 |
-
import base64
|
| 5 |
-
import json
|
| 6 |
-
from io import StringIO
|
| 7 |
-
from typing import Dict, List
|
| 8 |
|
| 9 |
import streamlit as st
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
from pylint import lint
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
hf_token =
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
if "chat_history" not in st.session_state:
|
| 18 |
-
st.session_state.chat_history = []
|
| 19 |
-
if "terminal_history" not in st.session_state:
|
| 20 |
-
st.session_state.terminal_history = []
|
| 21 |
-
if "workspace_projects" not in st.session_state:
|
| 22 |
-
st.session_state.workspace_projects = {}
|
| 23 |
-
|
| 24 |
-
# Load pre-trained RAG retriever
|
| 25 |
-
rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base")
|
| 26 |
-
|
| 27 |
-
# Load pre-trained chat model
|
| 28 |
-
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 29 |
-
|
| 30 |
-
# Load tokenizer
|
| 31 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 32 |
-
|
| 33 |
-
def process_input(user_input: str) -> str:
|
| 34 |
-
# Input pipeline: Tokenize and preprocess user input
|
| 35 |
-
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
| 36 |
-
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
| 37 |
-
|
| 38 |
-
# RAG model: Generate response
|
| 39 |
-
with torch.no_grad():
|
| 40 |
-
output = rag_retriever(input_ids, attention_mask=attention_mask)
|
| 41 |
-
response = output.generator_outputs[0].sequences[0]
|
| 42 |
-
|
| 43 |
-
# Chat model: Refine response
|
| 44 |
-
chat_input = tokenizer(response, return_tensors="pt")
|
| 45 |
-
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
|
| 46 |
-
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
|
| 47 |
-
with torch.no_grad():
|
| 48 |
-
chat_output = chat_model(**chat_input)
|
| 49 |
-
refined_response = chat_output.sequences[0]
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
return refined_response
|
| 53 |
|
| 54 |
class AIAgent:
|
| 55 |
-
def __init__(self, name
|
| 56 |
self.name = name
|
| 57 |
self.description = description
|
| 58 |
self.skills = skills
|
| 59 |
self._hf_api = hf_api
|
| 60 |
-
self._hf_token = hf_token
|
| 61 |
|
| 62 |
@property
|
| 63 |
def hf_api(self):
|
|
@@ -68,653 +36,47 @@ class AIAgent:
|
|
| 68 |
def has_valid_hf_token(self):
|
| 69 |
return bool(self._hf_token)
|
| 70 |
|
| 71 |
-
async def autonomous_build(self, chat_history
|
|
|
|
| 72 |
# Continuation of previous methods
|
| 73 |
-
summary = "Chat History:\n" + "\n".join(chat_history)
|
| 74 |
-
summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items())
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# - Check if the user has requested to create a new file
|
| 79 |
-
# - Check if the user has requested to install a package
|
| 80 |
-
# - Check if the user has requested to run a command
|
| 81 |
-
# - Check if the user has requested to generate code
|
| 82 |
-
# - Check if the user has requested to translate code
|
| 83 |
-
# - Check if the user has requested to summarize text
|
| 84 |
-
# - Check if the user has requested to analyze sentiment
|
| 85 |
|
| 86 |
-
|
| 87 |
-
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
with open(requirements_file, "w") as f:
|
| 98 |
-
f.write("# Add your project's dependencies here\n")
|
| 99 |
|
| 100 |
-
# Create
|
| 101 |
-
|
| 102 |
-
if not os.path.exists(app_file):
|
| 103 |
-
with open(app_file, "w") as f:
|
| 104 |
-
f.write("# Your project's main application logic goes here\n")
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
gui_code = generate_code(
|
| 109 |
-
"Create a simple GUI for this application", selected_model)
|
| 110 |
-
with open(app_file, "a") as f:
|
| 111 |
-
f.write(gui_code)
|
| 112 |
|
| 113 |
-
# Run the default build process
|
| 114 |
-
build_command = "pip install -r requirements.txt && python app.py"
|
| 115 |
-
try:
|
| 116 |
-
result = subprocess.run(
|
| 117 |
-
build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
| 118 |
-
st.write(f"Build Output:\n{result.stdout}")
|
| 119 |
-
if result.stderr:
|
| 120 |
-
st.error(f"Build Errors:\n{result.stderr}")
|
| 121 |
-
except Exception as e:
|
| 122 |
-
st.error(f"Build Error: {e}")
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def get_built_space_files() -> Dict[str, str]:
|
| 127 |
# Replace with your logic to gather the files you want to deploy
|
| 128 |
return {
|
| 129 |
"app.py": "# Your Streamlit app code here",
|
| 130 |
-
"requirements.txt": "streamlit\ntransformers"
|
| 131 |
# Add other files as needed
|
| 132 |
}
|
| 133 |
|
| 134 |
-
def save_agent_to_file(agent: AIAgent):
|
| 135 |
-
"""Saves the agent's prompt to a file."""
|
| 136 |
-
if not os.path.exists(AGENT_DIRECTORY):
|
| 137 |
-
os.makedirs(AGENT_DIRECTORY)
|
| 138 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
| 139 |
-
with open(file_path, "w") as file:
|
| 140 |
-
file.write(agent.create_agent_prompt())
|
| 141 |
-
st.session_state.available_agents.append(agent.name)
|
| 142 |
-
|
| 143 |
-
def load_agent_prompt(agent_name: str) -> str:
|
| 144 |
-
"""Loads an agent prompt from a file."""
|
| 145 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
| 146 |
-
if os.path.exists(file_path):
|
| 147 |
-
with open(file_path, "r") as file:
|
| 148 |
-
agent_prompt = file.read()
|
| 149 |
-
return agent_prompt
|
| 150 |
-
else:
|
| 151 |
-
return None
|
| 152 |
-
|
| 153 |
-
def create_agent_from_text(name: str, text: str) -> str:
|
| 154 |
-
skills = text.split("\n")
|
| 155 |
-
agent = AIAgent(name, "AI agent created from text input.", skills)
|
| 156 |
-
save_agent_to_file(agent)
|
| 157 |
-
return agent.create_agent_prompt()
|
| 158 |
-
|
| 159 |
-
def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
|
| 160 |
-
agent_prompt = load_agent_prompt(agent_name)
|
| 161 |
-
if agent_prompt is None:
|
| 162 |
-
return f"Agent {agent_name} not found."
|
| 163 |
-
|
| 164 |
-
model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"import os
|
| 165 |
-
import subprocess
|
| 166 |
-
import streamlit as st
|
| 167 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 168 |
-
import black
|
| 169 |
-
from pylint import lint
|
| 170 |
-
from io import StringIO
|
| 171 |
-
|
| 172 |
-
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
| 173 |
-
PROJECT_ROOT = "projects"
|
| 174 |
-
AGENT_DIRECTORY = "agents"
|
| 175 |
-
|
| 176 |
-
# Global state to manage communication between Tool Box and Workspace Chat App
|
| 177 |
-
if 'chat_history' not in st.session_state:
|
| 178 |
-
st.session_state.chat_history = []
|
| 179 |
-
if 'terminal_history' not in st.session_state:
|
| 180 |
-
st.session_state.terminal_history = []
|
| 181 |
-
if 'workspace_projects' not in st.session_state:
|
| 182 |
-
st.session_state.workspace_projects = {}
|
| 183 |
-
if 'available_agents' not in st.session_state:
|
| 184 |
-
st.session_state.available_agents = []
|
| 185 |
-
if 'current_state' not in st.session_state:
|
| 186 |
-
st.session_state.current_state = {
|
| 187 |
-
'toolbox': {},
|
| 188 |
-
'workspace_chat': {}
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
class AIAgent:
|
| 192 |
-
def __init__(self, name, description, skills):
|
| 193 |
-
self.name = name
|
| 194 |
-
self.description = description
|
| 195 |
-
self.skills = skills
|
| 196 |
-
|
| 197 |
-
def create_agent_prompt(self):
|
| 198 |
-
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
| 199 |
-
agent_prompt = f"""
|
| 200 |
-
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
| 201 |
-
{skills_str}
|
| 202 |
-
|
| 203 |
-
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
| 204 |
-
"""
|
| 205 |
-
return agent_prompt
|
| 206 |
-
|
| 207 |
-
def autonomous_build(self, chat_history, workspace_projects):
|
| 208 |
-
"""
|
| 209 |
-
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
| 210 |
-
"""
|
| 211 |
-
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
| 212 |
-
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
| 213 |
-
|
| 214 |
-
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
| 215 |
-
|
| 216 |
-
return summary, next_step
|
| 217 |
-
|
| 218 |
def save_agent_to_file(agent):
|
| 219 |
-
"""Saves the agent's prompt to a file
|
| 220 |
-
if not os.path.exists(AGENT_DIRECTORY):
|
| 221 |
-
os.makedirs(AGENT_DIRECTORY)
|
| 222 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
| 223 |
-
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
|
| 224 |
-
with open(file_path, "w") as file:
|
| 225 |
-
file.write(agent.create_agent_prompt())
|
| 226 |
-
with open(config_path, "w") as file:
|
| 227 |
-
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
|
| 228 |
-
st.session_state.available_agents.append(agent.name)
|
| 229 |
-
|
| 230 |
-
commit_and_push_changes(f"Add agent {agent.name}")
|
| 231 |
-
|
| 232 |
-
def load_agent_prompt(agent_name):
|
| 233 |
-
"""Loads an agent prompt from a file."""
|
| 234 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
| 235 |
-
if os.path.exists(file_path):
|
| 236 |
-
with open(file_path, "r") as file:
|
| 237 |
-
agent_prompt = file.read()
|
| 238 |
-
return agent_prompt
|
| 239 |
-
else:
|
| 240 |
-
return None
|
| 241 |
-
|
| 242 |
-
def create_agent_from_text(name, text):
|
| 243 |
-
skills = text.split('\n')
|
| 244 |
-
agent = AIAgent(name, "AI agent created from text input.", skills)
|
| 245 |
-
save_agent_to_file(agent)
|
| 246 |
-
return agent.create_agent_prompt()
|
| 247 |
-
|
| 248 |
-
# Chat interface using a selected agent
|
| 249 |
-
def chat_interface_with_agent(input_text, agent_name):
|
| 250 |
-
agent_prompt = load_agent_prompt(agent_name)
|
| 251 |
-
if agent_prompt is None:
|
| 252 |
-
return f"Agent {agent_name} not found."
|
| 253 |
-
|
| 254 |
-
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
| 255 |
-
model_name = "gpt2"
|
| 256 |
-
try:
|
| 257 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 258 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 259 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 260 |
-
except EnvironmentError as e:
|
| 261 |
-
return f"Error loading model: {e}"
|
| 262 |
-
|
| 263 |
-
# Combine the agent prompt with user input
|
| 264 |
-
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
| 265 |
-
|
| 266 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
| 267 |
-
max_input_length = 900
|
| 268 |
-
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
| 269 |
-
if input_ids.shape[1] > max_input_length:
|
| 270 |
-
input_ids = input_ids[:, :max_input_length]
|
| 271 |
-
|
| 272 |
-
# Generate chatbot response
|
| 273 |
-
outputs = model.generate(
|
| 274 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
| 275 |
-
)
|
| 276 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 277 |
-
return response
|
| 278 |
-
|
| 279 |
-
def workspace_interface(project_name):
|
| 280 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 281 |
-
if not os.path.exists(PROJECT_ROOT):
|
| 282 |
-
os.makedirs(PROJECT_ROOT)
|
| 283 |
-
if not os.path.exists(project_path):
|
| 284 |
-
os.makedirs(project_path)
|
| 285 |
-
st.session_state.workspace_projects[project_name] = {"files": []}
|
| 286 |
-
st.session_state.current_state['workspace_chat']['project_name'] = project_name
|
| 287 |
-
commit_and_push_changes(f"Create project {project_name}")
|
| 288 |
-
return f"Project {project_name} created successfully."
|
| 289 |
-
else:
|
| 290 |
-
return f"Project {project_name} already exists."
|
| 291 |
-
|
| 292 |
-
def add_code_to_workspace(project_name, code, file_name):
|
| 293 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 294 |
-
if os.path.exists(project_path):
|
| 295 |
-
file_path = os.path.join(project_path, file_name)
|
| 296 |
-
with open(file_path, "w") as file:
|
| 297 |
-
file.write(code)
|
| 298 |
-
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
| 299 |
-
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
|
| 300 |
-
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
|
| 301 |
-
return f"Code added to {file_name} in project {project_name} successfully."
|
| 302 |
-
else:
|
| 303 |
-
return f"Project {project_name} does not exist."
|
| 304 |
-
|
| 305 |
-
def terminal_interface(command, project_name=None):
|
| 306 |
-
if project_name:
|
| 307 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 308 |
-
if not os.path.exists(project_path):
|
| 309 |
-
return f"Project {project_name} does not exist."
|
| 310 |
-
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
| 311 |
-
else:
|
| 312 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
| 313 |
-
if result.returncode == 0:
|
| 314 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
|
| 315 |
-
return result.stdout
|
| 316 |
-
else:
|
| 317 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
|
| 318 |
-
return result.stderr
|
| 319 |
-
|
| 320 |
-
def summarize_text(text):
|
| 321 |
-
summarizer = pipeline("summarization")
|
| 322 |
-
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
| 323 |
-
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
|
| 324 |
-
return summary[0]['summary_text']
|
| 325 |
-
|
| 326 |
-
def sentiment_analysis(text):
|
| 327 |
-
analyzer = pipeline("sentiment-analysis")
|
| 328 |
-
sentiment = analyzer(text)
|
| 329 |
-
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
|
| 330 |
-
return sentiment[0]
|
| 331 |
-
|
| 332 |
-
# ... [rest of the translate_code function, but remove the OpenAI API call and replace it with your own logic] ...
|
| 333 |
-
|
| 334 |
-
def generate_code(code_idea):
|
| 335 |
-
# Replace this with a call to a Hugging Face model or your own logic
|
| 336 |
-
# For example, using a text-generation pipeline:
|
| 337 |
-
generator = pipeline('text-generation', model='gpt4o')
|
| 338 |
-
generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text']
|
| 339 |
-
messages=[
|
| 340 |
-
{"role": "system", "content": "You are an expert software developer."},
|
| 341 |
-
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
| 342 |
-
]
|
| 343 |
-
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
| 344 |
-
|
| 345 |
-
return generated_code
|
| 346 |
-
|
| 347 |
-
def translate_code(code, input_language, output_language):
|
| 348 |
-
# Define a dictionary to map programming languages to their corresponding file extensions
|
| 349 |
-
language_extensions = {
|
| 350 |
-
"Python": "py",
|
| 351 |
-
"JavaScript": "js",
|
| 352 |
-
"Java": "java",
|
| 353 |
-
"C++": "cpp",
|
| 354 |
-
"C#": "cs",
|
| 355 |
-
"Ruby": "rb",
|
| 356 |
-
"Go": "go",
|
| 357 |
-
"PHP": "php",
|
| 358 |
-
"Swift": "swift",
|
| 359 |
-
"TypeScript": "ts",
|
| 360 |
-
}
|
| 361 |
-
|
| 362 |
-
# Add code to handle edge cases such as invalid input and unsupported programming languages
|
| 363 |
-
if input_language not in language_extensions:
|
| 364 |
-
raise ValueError(f"Invalid input language: {input_language}")
|
| 365 |
-
if output_language not in language_extensions:
|
| 366 |
-
raise ValueError(f"Invalid output language: {output_language}")
|
| 367 |
-
|
| 368 |
-
# Use the dictionary to map the input and output languages to their corresponding file extensions
|
| 369 |
-
input_extension = language_extensions[input_language]
|
| 370 |
-
output_extension = language_extensions[output_language]
|
| 371 |
-
|
| 372 |
-
# Translate the code using the OpenAI API
|
| 373 |
-
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
|
| 374 |
-
response = openai.ChatCompletion.create(
|
| 375 |
-
model="gpt-4",
|
| 376 |
-
messages=[
|
| 377 |
-
{"role": "system", "content": "You are an expert software developer."},
|
| 378 |
-
{"role": "user", "content": prompt}
|
| 379 |
-
]
|
| 380 |
-
)
|
| 381 |
-
translated_code = response.choices[0].message['content'].strip()
|
| 382 |
-
|
| 383 |
-
# Return the translated code
|
| 384 |
-
translated_code = response.choices[0].message['content'].strip()
|
| 385 |
-
st.session_state.current_state['toolbox']['translated_code'] = translated_code
|
| 386 |
-
return translated_code
|
| 387 |
-
|
| 388 |
-
def generate_code(code_idea):
|
| 389 |
-
response = openai.ChatCompletion.create(
|
| 390 |
-
model="gpt-4",
|
| 391 |
-
messages=[
|
| 392 |
-
{"role": "system", "content": "You are an expert software developer."},
|
| 393 |
-
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
| 394 |
-
]
|
| 395 |
-
)
|
| 396 |
-
generated_code = response.choices[0].message['content'].strip()
|
| 397 |
-
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
| 398 |
-
return generated_code
|
| 399 |
-
|
| 400 |
-
def commit_and_push_changes(commit_message):
|
| 401 |
-
"""Commits and pushes changes to the Hugging Face repository."""
|
| 402 |
-
commands = [
|
| 403 |
-
"git add .",
|
| 404 |
-
f"git commit -m '{commit_message}'",
|
| 405 |
-
"git push"
|
| 406 |
-
]
|
| 407 |
-
for command in commands:
|
| 408 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
| 409 |
-
if result.returncode != 0:
|
| 410 |
-
st.error(f"Error executing command '{command}': {result.stderr}")
|
| 411 |
-
break
|
| 412 |
-
|
| 413 |
-
def interact_with_web_interface(agent, api_key, url, payload):
|
| 414 |
-
"""
|
| 415 |
-
Interacts with a web interface using the provided API key and payload.
|
| 416 |
-
|
| 417 |
-
Args:
|
| 418 |
-
agent: The AIAgent instance.
|
| 419 |
-
api_key: The API key for the web interface.
|
| 420 |
-
url: The URL of the web interface.
|
| 421 |
-
payload: The payload to send to the web interface.
|
| 422 |
-
|
| 423 |
-
Returns:
|
| 424 |
-
The response from the web interface.
|
| 425 |
-
"""
|
| 426 |
-
|
| 427 |
-
# Use the agent's knowledge to determine the appropriate HTTP method and headers.
|
| 428 |
-
http_method = agent.get_http_method(url)
|
| 429 |
-
headers = agent.get_headers(url)
|
| 430 |
-
|
| 431 |
-
# Add the API key to the headers.
|
| 432 |
-
headers["Authorization"] = f"Bearer {api_key}"
|
| 433 |
-
|
| 434 |
-
# Send the request to the web interface.
|
| 435 |
-
response = requests.request(http_method, url, headers=headers, json=payload)
|
| 436 |
-
|
| 437 |
-
# Return the response.
|
| 438 |
-
return response
|
| 439 |
-
|
| 440 |
-
def get_http_method(url):
|
| 441 |
-
"""
|
| 442 |
-
Determines the appropriate HTTP method for the given URL.
|
| 443 |
-
|
| 444 |
-
Args:
|
| 445 |
-
url: The URL of the web interface.
|
| 446 |
-
|
| 447 |
-
Returns:
|
| 448 |
-
The HTTP method (e.g., "GET", "POST", "PUT", "DELETE").
|
| 449 |
-
"""
|
| 450 |
-
|
| 451 |
-
# Use the agent's knowledge to determine the HTTP method.
|
| 452 |
-
# For example, the agent might know that the URL is for a REST API endpoint that supports CRUD operations.
|
| 453 |
-
|
| 454 |
-
return "GET"
|
| 455 |
-
|
| 456 |
-
def get_headers(url):
|
| 457 |
-
"""
|
| 458 |
-
Determines the appropriate headers for the given URL.
|
| 459 |
-
|
| 460 |
-
Args:
|
| 461 |
-
url: The URL of the web interface.
|
| 462 |
-
|
| 463 |
-
Returns:
|
| 464 |
-
A dictionary of headers.
|
| 465 |
-
"""
|
| 466 |
-
|
| 467 |
-
# Use the agent's knowledge to determine the headers.
|
| 468 |
-
# For example, the agent might know that the web interface requires an "Authorization" header with an API key.
|
| 469 |
-
|
| 470 |
-
return {"Content-Type": "application/json"}
|
| 471 |
-
|
| 472 |
-
# ... (rest of the code)
|
| 473 |
-
|
| 474 |
-
if app_mode == "Toolbox":
|
| 475 |
-
|
| 476 |
-
# Streamlit App
|
| 477 |
-
st.title("AI Agent Creator")
|
| 478 |
-
|
| 479 |
-
# Sidebar navigation
|
| 480 |
-
st.sidebar.title("Navigation")
|
| 481 |
-
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
| 482 |
-
|
| 483 |
-
if app_mode == "AI Agent Creator":
|
| 484 |
-
# AI Agent Creator
|
| 485 |
-
st.header("Create an AI Agent from Text")
|
| 486 |
-
|
| 487 |
-
st.subheader("From Text")
|
| 488 |
-
agent_name = st.text_input("Enter agent name:")
|
| 489 |
-
text_input = st.text_area("Enter skills (one per line):")
|
| 490 |
-
if st.button("Create Agent"):
|
| 491 |
-
agent_prompt = create_agent_from_text(agent_name, text_input)
|
| 492 |
-
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
| 493 |
-
st.session_state.available_agents.append(agent_name)
|
| 494 |
-
|
| 495 |
-
elif app_mode == "Tool Box":
|
| 496 |
-
# Tool Box
|
| 497 |
-
st.header("AI-Powered Tools")
|
| 498 |
-
|
| 499 |
-
# Chat Interface
|
| 500 |
-
st.subheader("Chat with CodeCraft")
|
| 501 |
-
chat_input = st.text_area("Enter your message:")
|
| 502 |
-
if st.button("Send"):
|
| 503 |
-
if chat_input.startswith("@"):
|
| 504 |
-
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
|
| 505 |
-
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
|
| 506 |
-
chat_response = chat_interface_with_agent(chat_input, agent_name)
|
| 507 |
-
else:
|
| 508 |
-
chat_response = chat_interface(chat_input)
|
| 509 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
| 510 |
-
st.write(f"CodeCraft: {chat_response}")
|
| 511 |
-
|
| 512 |
-
# Terminal Interface
|
| 513 |
-
st.subheader("Terminal")
|
| 514 |
-
terminal_input = st.text_input("Enter a command:")
|
| 515 |
-
if st.button("Run"):
|
| 516 |
-
terminal_output = terminal_interface(terminal_input)
|
| 517 |
-
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
| 518 |
-
st.code(terminal_output, language="bash")
|
| 519 |
-
|
| 520 |
-
# Code Editor Interface
|
| 521 |
-
st.subheader("Code Editor")
|
| 522 |
-
code_editor = st.text_area("Write your code:", height=300)
|
| 523 |
-
if st.button("Format & Lint"):
|
| 524 |
-
formatted_code, lint_message = code_editor_interface(code_editor)
|
| 525 |
-
st.code(formatted_code, language="python")
|
| 526 |
-
st.info(lint_message)
|
| 527 |
-
|
| 528 |
-
# Text Summarization Tool
|
| 529 |
-
st.subheader("Summarize Text")
|
| 530 |
-
text_to_summarize = st.text_area("Enter text to summarize:")
|
| 531 |
-
if st.button("Summarize"):
|
| 532 |
-
summary = summarize_text(text_to_summarize)
|
| 533 |
-
st.write(f"Summary: {summary}")
|
| 534 |
-
|
| 535 |
-
# Sentiment Analysis Tool
|
| 536 |
-
st.subheader("Sentiment Analysis")
|
| 537 |
-
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
| 538 |
-
if st.button("Analyze Sentiment"):
|
| 539 |
-
sentiment = sentiment_analysis(sentiment_text)
|
| 540 |
-
st.write(f"Sentiment: {sentiment}")
|
| 541 |
-
|
| 542 |
-
# Text Translation Tool (Code Translation)
|
| 543 |
-
st.subheader("Translate Code")
|
| 544 |
-
code_to_translate = st.text_area("Enter code to translate:")
|
| 545 |
-
input_language = st.text_input("Enter input language (e.g. 'Python'):")
|
| 546 |
-
output_language = st.text_input("Enter output language (e.g. 'JavaScript'):")
|
| 547 |
-
if st.button("Translate Code"):
|
| 548 |
-
translated_code = translate_code(code_to_translate, input_language, output_language)
|
| 549 |
-
st.code(translated_code, language=output_language.lower())
|
| 550 |
-
|
| 551 |
-
# Code Generation
|
| 552 |
-
st.subheader("Code Generation")
|
| 553 |
-
code_idea = st.text_input("Enter your code idea:")
|
| 554 |
-
if st.button("Generate Code"):
|
| 555 |
-
generated_code = generate_code(code_idea)
|
| 556 |
-
st.code(generated_code, language="python")
|
| 557 |
-
|
| 558 |
-
# Display Preset Commands
|
| 559 |
-
st.subheader("Preset Commands")
|
| 560 |
-
preset_commands = {
|
| 561 |
-
"Create a new project": "create_project('project_name')",
|
| 562 |
-
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
|
| 563 |
-
"Run terminal command": "terminal_interface('command', 'project_name')",
|
| 564 |
-
"Generate code": "generate_code('code_idea')",
|
| 565 |
-
"Summarize text": "summarize_text('text')",
|
| 566 |
-
"Analyze sentiment": "sentiment_analysis('text')",
|
| 567 |
-
"Translate code": "translate_code('code', 'source_language', 'target_language')",
|
| 568 |
-
}
|
| 569 |
-
for command_name, command in preset_commands.items():
|
| 570 |
-
st.write(f"{command_name}: `{command}`")
|
| 571 |
-
|
| 572 |
-
elif app_mode == "Workspace Chat App":
|
| 573 |
-
# Workspace Chat App
|
| 574 |
-
st.header("Workspace Chat App")
|
| 575 |
-
|
| 576 |
-
# Project Workspace Creation
|
| 577 |
-
st.subheader("Create a New Project")
|
| 578 |
-
project_name = st.text_input("Enter project name:")
|
| 579 |
-
if st.button("Create Project"):
|
| 580 |
-
workspace_status = workspace_interface(project_name)
|
| 581 |
-
st.success(workspace_status)
|
| 582 |
-
|
| 583 |
-
# Add Code to Workspace
|
| 584 |
-
st.subheader("Add Code to Workspace")
|
| 585 |
-
code_to_add = st.text_area("Enter code to add to workspace:")
|
| 586 |
-
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
|
| 587 |
-
if st.button("Add Code"):
|
| 588 |
-
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
| 589 |
-
st.success(add_code_status)
|
| 590 |
-
|
| 591 |
-
# Terminal Interface with Project Context
|
| 592 |
-
st.subheader("Terminal (Workspace Context)")
|
| 593 |
-
terminal_input = st.text_input("Enter a command within the workspace:")
|
| 594 |
-
if st.button("Run Command"):
|
| 595 |
-
terminal_output = terminal_interface(terminal_input, project_name)
|
| 596 |
-
st.code(terminal_output, language="bash")
|
| 597 |
-
|
| 598 |
-
# Chat Interface for Guidance
|
| 599 |
-
st.subheader("Chat with CodeCraft for Guidance")
|
| 600 |
-
chat_input = st.text_area("Enter your message for guidance:")
|
| 601 |
-
if st.button("Get Guidance"):
|
| 602 |
-
chat_response = chat_interface(chat_input)
|
| 603 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
| 604 |
-
st.write(f"CodeCraft: {chat_response}")
|
| 605 |
-
|
| 606 |
-
# Display Chat History
|
| 607 |
-
st.subheader("Chat History")
|
| 608 |
-
for user_input, response in st.session_state.chat_history:
|
| 609 |
-
st.write(f"User: {user_input}")
|
| 610 |
-
st.write(f"CodeCraft: {response}")
|
| 611 |
-
|
| 612 |
-
# Display Terminal History
|
| 613 |
-
st.subheader("Terminal History")
|
| 614 |
-
for command, output in st.session_state.terminal_history:
|
| 615 |
-
st.write(f"Command: {command}")
|
| 616 |
-
st.code(output, language="bash")
|
| 617 |
-
|
| 618 |
-
# Display Projects and Files
|
| 619 |
-
st.subheader("Workspace Projects")
|
| 620 |
-
for project, details in st.session_state.workspace_projects.items():
|
| 621 |
-
st.write(f"Project: {project}")
|
| 622 |
-
st.write("Files:")
|
| 623 |
-
for file in details["files"]:
|
| 624 |
-
st.write(f"- {file}")
|
| 625 |
-
try:
|
| 626 |
-
generator = pipeline("text-generation", model=model_name)
|
| 627 |
-
generator.tokenizer.pad_token = generator.tokenizer.eos_token
|
| 628 |
-
generated_response = generator(
|
| 629 |
-
f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"]
|
| 630 |
-
return generated_response
|
| 631 |
-
except Exception as e:
|
| 632 |
-
return f"Error loading model: {e}"
|
| 633 |
-
|
| 634 |
-
def terminal_interface(command: str, project_name: str = None) -> str:
|
| 635 |
-
if project_name:
|
| 636 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 637 |
-
if not os.path.exists(project_path):
|
| 638 |
-
return f"Project {project_name} does not exist."
|
| 639 |
-
result = subprocess.run(
|
| 640 |
-
command, shell=True, capture_output=True, text=True, cwd=project_path)
|
| 641 |
-
else:
|
| 642 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
| 643 |
-
return result.stdout
|
| 644 |
-
|
| 645 |
-
def code_editor_interface(code: str) -> str:
|
| 646 |
-
try:
|
| 647 |
-
formatted_code = black.format_str(code, mode=black.FileMode())
|
| 648 |
-
except black.NothingChanged:
|
| 649 |
-
formatted_code = code
|
| 650 |
-
|
| 651 |
-
result = StringIO()
|
| 652 |
-
sys.stdout = result
|
| 653 |
-
sys.stderr = result
|
| 654 |
-
|
| 655 |
-
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
| 656 |
-
sys.stdout = sys.__stdout__
|
| 657 |
-
sys.stderr = sys.__stderr__
|
| 658 |
-
|
| 659 |
-
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
| 660 |
-
|
| 661 |
-
return formatted_code, lint_message
|
| 662 |
-
|
| 663 |
-
def summarize_text(text: str) -> str:
|
| 664 |
-
summarizer = pipeline("summarization")
|
| 665 |
-
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
| 666 |
-
return summary[0]['summary_text']
|
| 667 |
-
|
| 668 |
-
def sentiment_analysis(text: str) -> str:
|
| 669 |
-
analyzer = pipeline("sentiment-analysis")
|
| 670 |
-
result = analyzer(text)
|
| 671 |
-
return result[0]['label']
|
| 672 |
-
|
| 673 |
-
def translate_code(code: str, source_language: str, target_language: str) -> str:
|
| 674 |
-
# Use a Hugging Face translation model instead of OpenAI
|
| 675 |
-
# Example: English to Spanish
|
| 676 |
-
translator = pipeline(
|
| 677 |
-
"translation", model="bartowski/Codestral-22B-v0.1-GGUF")
|
| 678 |
-
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
| 679 |
-
return translated_code
|
| 680 |
-
|
| 681 |
-
def generate_code(code_idea: str, model_name: str) -> str:
|
| 682 |
-
"""Generates code using the selected model."""
|
| 683 |
-
try:
|
| 684 |
-
generator = pipeline('text-generation', model=model_name)
|
| 685 |
-
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
|
| 686 |
-
return generated_code
|
| 687 |
-
except Exception as e:
|
| 688 |
-
return f"Error generating code: {e}"
|
| 689 |
-
|
| 690 |
-
def chat_interface(input_text: str) -> str:
|
| 691 |
-
"""Handles general chat interactions with the user."""
|
| 692 |
-
# Use a Hugging Face chatbot model or your own logic
|
| 693 |
-
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
| 694 |
-
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
| 695 |
-
return response
|
| 696 |
-
|
| 697 |
-
def workspace_interface(project_name: str) -> str:
|
| 698 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 699 |
-
if not os.path.exists(project_path):
|
| 700 |
-
os.makedirs(project_path)
|
| 701 |
-
st.session_state.workspace_projects[project_name] = {'files': []}
|
| 702 |
-
return f"Project '{project_name}' created successfully."
|
| 703 |
-
else:
|
| 704 |
-
return f"Project '{project_name}' already exists."
|
| 705 |
-
|
| 706 |
-
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
|
| 707 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 708 |
-
if not os.path.exists(project_path):
|
| 709 |
-
return f"Project '{project_name}' does not exist."
|
| 710 |
-
|
| 711 |
-
file_path = os.path.join(project_path, file_name)
|
| 712 |
-
with open(file_path, "w") as file:
|
| 713 |
-
file.write(code)
|
| 714 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
| 715 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
| 716 |
|
| 717 |
-
def
|
| 718 |
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
| 719 |
headers = {"Authorization": f"Bearer {api.access_token}"}
|
| 720 |
payload = {
|
|
@@ -729,7 +91,7 @@ def create_space_on_hugging_face(api, name, description, public, files, entrypoi
|
|
| 729 |
"content": contents,
|
| 730 |
"path": filename,
|
| 731 |
"encoding": "utf-8",
|
| 732 |
-
"mode": "overwrite"
|
| 733 |
}
|
| 734 |
payload["files"].append(data)
|
| 735 |
response = requests.post(url, json=payload, headers=headers)
|
|
@@ -742,193 +104,78 @@ def create_space_on_hugging_face(api, name, description, public, files, entrypoi
|
|
| 742 |
# Streamlit App
|
| 743 |
st.title("AI Agent Creator")
|
| 744 |
|
| 745 |
-
# Sidebar navigation
|
| 746 |
-
st.sidebar.title("Navigation")
|
| 747 |
-
app_mode = st.sidebar.selectbox(
|
| 748 |
-
"Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
| 749 |
-
|
| 750 |
-
if app_mode == "AI Agent Creator":
|
| 751 |
-
# AI Agent Creator
|
| 752 |
-
st.header("Create an AI Agent from Text")
|
| 753 |
-
|
| 754 |
-
st.subheader("From Text")
|
| 755 |
-
agent_name = st.text_input("Enter agent name:")
|
| 756 |
-
text_input = st.text_area("Enter skills (one per line):")
|
| 757 |
-
if st.button("Create Agent"):
|
| 758 |
-
agent_prompt = create_agent_from_text(agent_name, text_input)
|
| 759 |
-
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
| 760 |
-
st.session_state.available_agents.append(agent_name)
|
| 761 |
-
|
| 762 |
-
elif app_mode == "Tool Box":
|
| 763 |
-
# Tool Box
|
| 764 |
-
st.header("AI-Powered Tools")
|
| 765 |
-
|
| 766 |
-
# Chat Interface
|
| 767 |
-
st.subheader("Chat with CodeCraft")
|
| 768 |
-
chat_input = st.text_area("Enter your message:")
|
| 769 |
-
if st.button("Send"):
|
| 770 |
-
chat_response = chat_interface(chat_input)
|
| 771 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
| 772 |
-
st.write(f"CodeCraft: {chat_response}")
|
| 773 |
-
|
| 774 |
-
# Terminal Interface
|
| 775 |
-
st.subheader("Terminal")
|
| 776 |
-
terminal_input = st.text_input("Enter a command:")
|
| 777 |
-
if st.button("Run"):
|
| 778 |
-
terminal_output = terminal_interface(terminal_input)
|
| 779 |
-
st.session_state.terminal_history.append(
|
| 780 |
-
(terminal_input, terminal_output))
|
| 781 |
-
st.code(terminal_output, language="bash")
|
| 782 |
-
|
| 783 |
-
# Code Editor Interface
|
| 784 |
-
st.subheader("Code Editor")
|
| 785 |
-
code_editor = st.text_area("Write your code:", height=300)
|
| 786 |
-
if st.button("Format & Lint"):
|
| 787 |
-
formatted_code, lint_message = code_editor_interface(code_editor)
|
| 788 |
-
st.code(formatted_code, language="python")
|
| 789 |
-
st.info(lint_message)
|
| 790 |
-
|
| 791 |
-
# Text Summarization Tool
|
| 792 |
-
st.subheader("Summarize Text")
|
| 793 |
-
text_to_summarize = st.text_area("Enter text to summarize:")
|
| 794 |
-
if st.button("Summarize"):
|
| 795 |
-
summary = summarize_text(text_to_summarize)
|
| 796 |
-
st.write(f"Summary: {summary}")
|
| 797 |
-
|
| 798 |
-
# Sentiment Analysis Tool
|
| 799 |
-
st.subheader("Sentiment Analysis")
|
| 800 |
-
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
| 801 |
-
if st.button("Analyze Sentiment"):
|
| 802 |
-
sentiment = sentiment_analysis(sentiment_text)
|
| 803 |
-
st.write(f"Sentiment: {sentiment}")
|
| 804 |
-
|
| 805 |
-
# Text Translation Tool (Code Translation)
|
| 806 |
-
st.subheader("Translate Code")
|
| 807 |
-
code_to_translate = st.text_area("Enter code to translate:")
|
| 808 |
-
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
| 809 |
-
target_language = st.text_input(
|
| 810 |
-
"Enter target language (e.g., 'JavaScript'):")
|
| 811 |
-
if st.button("Translate Code"):
|
| 812 |
-
translated_code = translate_code(
|
| 813 |
-
code_to_translate, source_language, target_language)
|
| 814 |
-
st.code(translated_code, language=target_language.lower())
|
| 815 |
-
|
| 816 |
-
# Code Generation
|
| 817 |
-
st.subheader("Code Generation")
|
| 818 |
-
code_idea = st.text_input("Enter your code idea:")
|
| 819 |
-
if st.button("Generate Code"):
|
| 820 |
-
generated_code = generate_code(code_idea)
|
| 821 |
-
st.code(generated_code, language="python")
|
| 822 |
-
|
| 823 |
elif app_mode == "Workspace Chat App":
|
| 824 |
# Workspace Chat App
|
| 825 |
st.header("Workspace Chat App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 826 |
|
| 827 |
-
#
|
| 828 |
-
st.
|
| 829 |
-
|
| 830 |
-
if st.button("Create Project"):
|
| 831 |
-
workspace_status = workspace_interface(project_name)
|
| 832 |
-
st.success(workspace_status)
|
| 833 |
-
|
| 834 |
-
# Automatically create requirements.txt and app.py
|
| 835 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 836 |
-
requirements_file = os.path.join(project_path, "requirements.txt")
|
| 837 |
-
if not os.path.exists(requirements_file):
|
| 838 |
-
with open(requirements_file, "w") as f:
|
| 839 |
-
f.write("# Add your project's dependencies here\n")
|
| 840 |
-
|
| 841 |
-
app_file = os.path.join(project_path, "app.py")
|
| 842 |
-
if not os.path.exists(app_file):
|
| 843 |
-
with open(app_file, "w") as f:
|
| 844 |
-
f.write("# Your project's main application logic goes here\n")
|
| 845 |
-
|
| 846 |
-
# Add Code to Workspace
|
| 847 |
-
st.subheader("Add Code to Workspace")
|
| 848 |
-
code_to_add = st.text_area("Enter code to add to workspace:")
|
| 849 |
-
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
| 850 |
-
if st.button("Add Code"):
|
| 851 |
-
add_code_status = add_code_to_workspace(
|
| 852 |
-
project_name, code_to_add, file_name)
|
| 853 |
-
st.session_state.terminal_history.append(
|
| 854 |
-
(f"Add Code: {code_to_add}", add_code_status))
|
| 855 |
-
st.success(add_code_status)
|
| 856 |
-
|
| 857 |
-
# Terminal Interface with Project Context
|
| 858 |
-
st.subheader("Terminal (Workspace Context)")
|
| 859 |
-
terminal_input = st.text_input("Enter a command within the workspace:")
|
| 860 |
-
if st.button("Run Command"):
|
| 861 |
-
terminal_output = terminal_interface(terminal_input, project_name)
|
| 862 |
-
st.session_state.terminal_history.append(
|
| 863 |
-
(terminal_input, terminal_output))
|
| 864 |
-
st.code(terminal_output, language="bash")
|
| 865 |
-
|
| 866 |
-
# Chat Interface for Guidance
|
| 867 |
-
st.subheader("Chat with CodeCraft for Guidance")
|
| 868 |
-
chat_input = st.text_area("Enter your message for guidance:")
|
| 869 |
-
if st.button("Get Guidance"):
|
| 870 |
-
chat_response = chat_interface(chat_input)
|
| 871 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
| 872 |
-
st.write(f"CodeCraft: {chat_response}")
|
| 873 |
-
|
| 874 |
-
# Display Chat History
|
| 875 |
-
st.subheader("Chat History")
|
| 876 |
-
for user_input, response in st.session_state.chat_history:
|
| 877 |
-
st.write(f"User: {user_input}")
|
| 878 |
-
st.write(f"CodeCraft: {response}")
|
| 879 |
|
| 880 |
-
#
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 885 |
|
| 886 |
-
#
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
st.write(f"Project: {project}")
|
| 890 |
-
for file in details['files']:
|
| 891 |
-
st.write(f" - {file}")
|
| 892 |
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
"Select an AI agent", st.session_state.available_agents)
|
| 897 |
-
agent_chat_input = st.text_area("Enter your message for the agent:")
|
| 898 |
-
if st.button("Send to Agent"):
|
| 899 |
-
agent_chat_response = chat_interface_with_agent(
|
| 900 |
-
agent_chat_input, selected_agent)
|
| 901 |
-
st.session_state.chat_history.append(
|
| 902 |
-
(agent_chat_input, agent_chat_response))
|
| 903 |
-
st.write(f"{selected_agent}: {agent_chat_response}")
|
| 904 |
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
|
|
|
|
|
|
|
|
|
| 908 |
|
| 909 |
-
|
| 910 |
-
selected_model = st.selectbox(
|
| 911 |
-
"Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
| 912 |
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
|
| 917 |
-
#
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
|
|
|
|
|
|
|
|
|
| 925 |
st.write(summary)
|
| 926 |
st.write("Next Step:")
|
| 927 |
st.write(next_step)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 928 |
|
| 929 |
# If everything went well, proceed to deploy the Space
|
| 930 |
if agent._hf_api and agent.has_valid_hf_token():
|
| 931 |
-
agent.deploy_built_space_to_hf()
|
| 932 |
# Use the hf_token to interact with the Hugging Face API
|
| 933 |
-
api = HfApi(token=
|
| 934 |
-
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
+
import subprocess
|
| 5 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
| 6 |
+
import black
|
| 7 |
from pylint import lint
|
| 8 |
+
import sys
|
| 9 |
+
import torch
|
| 10 |
+
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
| 11 |
+
import base64
|
| 12 |
|
| 13 |
+
# Set your Hugging Face API key here
|
| 14 |
+
# hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
| 15 |
+
# Get Hugging Face token from secrets.toml - this line should already be in the main code
|
| 16 |
+
hf_token = st.secrets["huggingface"]["hf_token"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
| 19 |
+
PROJECT_ROOT = "projects"
|
| 20 |
return refined_response
|
| 21 |
|
| 22 |
class AIAgent:
|
| 23 |
+
def __init__(self, name, description, skills, hf_api=None):
|
| 24 |
self.name = name
|
| 25 |
self.description = description
|
| 26 |
self.skills = skills
|
| 27 |
self._hf_api = hf_api
|
| 28 |
+
self._hf_token = hf_token # Store the token here
|
| 29 |
|
| 30 |
@property
|
| 31 |
def hf_api(self):
|
|
|
|
| 36 |
def has_valid_hf_token(self):
|
| 37 |
return bool(self._hf_token)
|
| 38 |
|
| 39 |
+
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
|
| 40 |
+
self._hf_token = hf_token
|
| 41 |
# Continuation of previous methods
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
| 44 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
st.error(f"Build Error: {e}")
|
|
|
|
| 47 |
|
| 48 |
+
return summary, next_step
|
| 49 |
+
|
| 50 |
+
def deploy_built_space_to_hf(self):
|
| 51 |
+
if not self._hf_api or not self._hf_token:
|
| 52 |
+
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
|
| 53 |
|
| 54 |
+
# Assuming you have a function to get the files for your Space
|
| 55 |
+
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
|
| 56 |
+
files = get_built_space_files() # Placeholder - you'll need to define this function
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Create the Space
|
| 59 |
+
create_space(self.hf_api, repository_name, "Description", True, files)
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
|
| 62 |
+
st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Add any missing functions from your original code (e.g., get_built_space_files)
|
| 66 |
+
def get_built_space_files():
|
|
|
|
| 67 |
# Replace with your logic to gather the files you want to deploy
|
| 68 |
return {
|
| 69 |
"app.py": "# Your Streamlit app code here",
|
| 70 |
+
"requirements.txt": "streamlit\ntransformers"
|
| 71 |
# Add other files as needed
|
| 72 |
}
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
def save_agent_to_file(agent):
|
| 75 |
+
"""Saves the agent's prompt to a file."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
| 77 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
| 78 |
|
| 79 |
+
def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
| 80 |
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
| 81 |
headers = {"Authorization": f"Bearer {api.access_token}"}
|
| 82 |
payload = {
|
|
|
|
| 91 |
"content": contents,
|
| 92 |
"path": filename,
|
| 93 |
"encoding": "utf-8",
|
| 94 |
+
"mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge",
|
| 95 |
}
|
| 96 |
payload["files"].append(data)
|
| 97 |
response = requests.post(url, json=payload, headers=headers)
|
|
|
|
| 104 |
# Streamlit App
|
| 105 |
st.title("AI Agent Creator")
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
elif app_mode == "Workspace Chat App":
|
| 108 |
# Workspace Chat App
|
| 109 |
st.header("Workspace Chat App")
|
| 110 |
+
def get_built_space_files():
|
| 111 |
+
"""
|
| 112 |
+
Gathers the necessary files for the Hugging Face Space,
|
| 113 |
+
handling different project structures and file types.
|
| 114 |
+
"""
|
| 115 |
+
files = {}
|
| 116 |
|
| 117 |
+
# Get the current project name (adjust as needed)
|
| 118 |
+
project_name = st.session_state.get('project_name', 'my_project')
|
| 119 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# Define a list of files/directories to search for
|
| 122 |
+
targets = [
|
| 123 |
+
"app.py",
|
| 124 |
+
"requirements.txt",
|
| 125 |
+
"Dockerfile",
|
| 126 |
+
"docker-compose.yml", # Example YAML file
|
| 127 |
+
"src", # Example subdirectory
|
| 128 |
+
"assets" # Another example subdirectory
|
| 129 |
+
]
|
| 130 |
|
| 131 |
+
# Iterate through the targets
|
| 132 |
+
for target in targets:
|
| 133 |
+
target_path = os.path.join(project_path, target)
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# If the target is a file, add it to the files dictionary
|
| 136 |
+
if os.path.isfile(target_path):
|
| 137 |
+
add_file_to_dictionary(files, target_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
# If the target is a directory, recursively search for files within it
|
| 140 |
+
elif os.path.isdir(target_path):
|
| 141 |
+
for root, _, filenames in os.walk(target_path):
|
| 142 |
+
for filename in filenames:
|
| 143 |
+
file_path = os.path.join(root, filename)
|
| 144 |
+
add_file_to_dictionary(files, file_path)
|
| 145 |
|
| 146 |
+
return files
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
def add_file_to_dictionary(files, file_path):
|
| 149 |
+
"""Helper function to add a file to the files dictionary."""
|
| 150 |
+
filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path
|
| 151 |
|
| 152 |
+
# Handle text and binary files
|
| 153 |
+
if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")):
|
| 154 |
+
with open(file_path, "r") as f:
|
| 155 |
+
files[filename] = f.read()
|
| 156 |
+
else:
|
| 157 |
+
with open(file_path, "rb") as f:
|
| 158 |
+
file_content = f.read()
|
| 159 |
+
files[filename] = base64.b64encode(file_content).decode("utf-8")
|
| 160 |
+
# Project Workspace Creation
|
| 161 |
+
st.subheader("Create a New Project")
|
| 162 |
+
project_name = st.text_input("Enter project name:")
|
| 163 |
st.write(summary)
|
| 164 |
st.write("Next Step:")
|
| 165 |
st.write(next_step)
|
| 166 |
+
|
| 167 |
+
# Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI:
|
| 168 |
+
if st.button("Automate", args=(hf_token,)):
|
| 169 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
| 170 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
|
| 171 |
+
st.write("Autonomous Build Summary:")
|
| 172 |
+
st.write(summary)
|
| 173 |
+
st.write("Next Step:")
|
| 174 |
+
st.write(next_step)
|
| 175 |
|
| 176 |
# If everything went well, proceed to deploy the Space
|
| 177 |
if agent._hf_api and agent.has_valid_hf_token():
|
| 178 |
+
agent.deploy_built_space_to_hf()
|
| 179 |
# Use the hf_token to interact with the Hugging Face API
|
| 180 |
+
api = HfApi(token=hf_token)
|
| 181 |
+
# Function to create a Space on Hugging Face
|