Spaces:
Running
Running
#SBATCH --partition=batch | |
#SBATCH --job-name=llama2%j | |
#SBATCH --output=llama2%j.out | |
#SBATCH --error=llama2%j.err | |
#SBATCH --time=0-23:00:00 | |
#SBATCH --mem=100G | |
#SBATCH --gres=gpu:a100:1 | |
#SBATCH --nodes=1 | |
## run the application: | |
NAME="llama2" # Name of the experiment | |
BATCH_SIZE=8 | |
CKPT_PATH="checkpoints/video_llama_checkpoint_last.pth" # path to the checkpoint | |
DATASET="msvd" # available datasets: tvqa, msrvtt, msvd, activitynet,tgif ,video_chatgpt_generic,video_chatgpt_temporal,video_chatgpt_consistency | |
# set the paths to the dataset files | |
videos_path="" # path to the videos file | |
subtitles_path="" # path to the subtitles file | |
ann_path="" # path to the annotations file | |
cfg_path="test_configs/llama2_test_config.yaml" # path to the config file | |
# # if the number of samples are too large you can specify the start and end index to evaluate on several machines | |
# pass the start and end index as arguments | |
start=$1 # start index | |
end=$2 # end index | |
# if start and end are not provided, then use the whole dataset | |
if [ -z "$start" ] | |
then | |
start=0 | |
fi | |
if [ -z "$end" ] | |
then | |
end=10000000 | |
fi | |
echo "Start: $start" | |
echo "End: $end" | |
# with subtitles | |
python evaluation/eval_minigpt4_video.py --dataset $DATASET --batch_size $BATCH_SIZE --name $NAME --videos_path $videos_path --subtitles_path $subtitles_path --ann_path $ann_path --ckpt $CKPT_PATH --cfg-path=$cfg_path --start $start --end $end --add_subtitles | |
# without subtitles | |
# python evaluation/eval_minigpt4_video.py --dataset $DATASET --batch_size $BATCH_SIZE --name $NAME --videos_path $videos_path --subtitles_path $subtitles_path --ann_path $ann_path --ckpt $CKPT_PATH --cfg-path=$cfg_path --start $start --end $end | |