#!/bin/bash #SBATCH --partition=batch #SBATCH --job-name=llama2%j #SBATCH --output=llama2%j.out #SBATCH --error=llama2%j.err #SBATCH --time=0-23:00:00 #SBATCH --mem=100G #SBATCH --gres=gpu:a100:1 #SBATCH --nodes=1 ## run the application: NAME="llama2" # Name of the experiment BATCH_SIZE=8 CKPT_PATH="checkpoints/video_llama_checkpoint_last.pth" # path to the checkpoint DATASET="msvd" # available datasets: tvqa, msrvtt, msvd, activitynet,tgif ,video_chatgpt_generic,video_chatgpt_temporal,video_chatgpt_consistency # set the paths to the dataset files videos_path="" # path to the videos file subtitles_path="" # path to the subtitles file ann_path="" # path to the annotations file cfg_path="test_configs/llama2_test_config.yaml" # path to the config file # # if the number of samples are too large you can specify the start and end index to evaluate on several machines # pass the start and end index as arguments start=$1 # start index end=$2 # end index # if start and end are not provided, then use the whole dataset if [ -z "$start" ] then start=0 fi if [ -z "$end" ] then end=10000000 fi echo "Start: $start" echo "End: $end" # with subtitles python evaluation/eval_minigpt4_video.py --dataset $DATASET --batch_size $BATCH_SIZE --name $NAME --videos_path $videos_path --subtitles_path $subtitles_path --ann_path $ann_path --ckpt $CKPT_PATH --cfg-path=$cfg_path --start $start --end $end --add_subtitles # without subtitles # python evaluation/eval_minigpt4_video.py --dataset $DATASET --batch_size $BATCH_SIZE --name $NAME --videos_path $videos_path --subtitles_path $subtitles_path --ann_path $ann_path --ckpt $CKPT_PATH --cfg-path=$cfg_path --start $start --end $end