Spaces:
Running
Running
import sys | |
import os | |
project_dir = os.getcwd() | |
sys.path.append(project_dir) | |
import json | |
from tqdm import tqdm | |
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds | |
import argparse | |
import json | |
import argparse | |
import torch | |
import re | |
from tqdm import tqdm | |
from PIL import Image | |
# from openai import OpenAI | |
from index import MemoryIndex | |
import pysrt | |
import chardet | |
import torch | |
import random | |
import numpy as np | |
import torch.backends.cudnn as cudnn | |
import shutil | |
def str2bool(v): | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected.') | |
def get_arguments(): | |
parser = argparse.ArgumentParser(description="Inference parameters") | |
parser.add_argument("--neighbours", type=int, default=-1) | |
parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment") | |
parser.add_argument("--add_unknown", action='store_true') | |
parser.add_argument("--use_chatgpt", action='store_true') | |
parser.add_argument("--use_choices_for_info", action='store_true') | |
parser.add_argument("--use_gt_information", action='store_true') | |
parser.add_argument("--inference_text", action='store_true') | |
parser.add_argument("--use_gt_information_with_distraction", action='store_true') | |
parser.add_argument("--num_distraction", type=int, default=2) | |
parser.add_argument("--add_confidance_score", action='store_true') | |
parser.add_argument("--use_original_video", action='store_true') | |
parser.add_argument("--use_video_embedding", action='store_true') | |
parser.add_argument("--use_clips_for_info", action='store_true') | |
parser.add_argument("--use_GT_video", action='store_true') | |
parser.add_argument("--use_gt_summary", action='store_true') | |
parser.add_argument("--index_subtitles", action='store_true') | |
parser.add_argument("--index_subtitles_together", action='store_true') | |
parser.add_argument("--ask_the_question_early", action='store_true') | |
parser.add_argument("--clip_in_ask_early", action='store_true') | |
parser.add_argument("--summary_with_subtitles_only", action='store_true') | |
parser.add_argument("--use_coherent_description", action='store_true') | |
parser.add_argument("--start", default=0, type=int) | |
parser.add_argument("--end", default=100000, type=int) | |
parser.add_argument("--exp_name", type=str,default="",help="name of eval folder") | |
parser.add_argument("--vision_only", action='store_true') | |
parser.add_argument("--model_summary_only", action='store_true') | |
parser.add_argument("--subtitles_only", action='store_true') | |
parser.add_argument("--info_only", action='store_true') | |
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml") | |
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth") | |
parser.add_argument("--add_subtitles", action='store_true') | |
parser.add_argument("--eval_opt", type=str, default='all') | |
parser.add_argument("--max_new_tokens", type=int, default=300) | |
parser.add_argument("--batch_size", type=int, default=8) | |
parser.add_argument("--lora_r", type=int, default=64) | |
parser.add_argument("--lora_alpha", type=int, default=16) | |
parser.add_argument("--video_path", type=str, help="path to the video") | |
parser.add_argument("--use_openai_embedding",type=str2bool, default=False) | |
parser.add_argument("--annotation_path", type=str, help="path to the annotation file") | |
parser.add_argument("--videos_path", type=str, help="path to the videos directory") | |
parser.add_argument("--subtitle_path", type=str, help="path to the subtitles directory") | |
parser.add_argument("--movienet_annotations_dir", type=str, help="path to the movienet annotations directory") | |
parser.add_argument("--video_clips_saving_path", type=str, help="path to save the splitted small video clips") | |
parser.add_argument("--options", nargs="+") | |
return parser.parse_args() | |
def time_to_seconds(subrip_time): | |
return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000 | |
def get_movie_time(subtitle_path): | |
# read the subtitle file and detect the encoding | |
with open(subtitle_path, 'rb') as f: | |
result = chardet.detect(f.read()) | |
subtitles = pysrt.open(subtitle_path, encoding=result['encoding']) | |
video_time=time_to_seconds(subtitles[-1].end) | |
return video_time | |
def clean_text(subtitles_text): | |
# Remove unwanted characters except for letters, digits, and single quotes | |
subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text) | |
# Replace multiple spaces with a single space | |
subtitles_text = re.sub(r'\s+', ' ', subtitles_text) | |
return subtitles_text.strip() | |
class MovieQAEval (GoldFish_LV): | |
def __init__(self,args): | |
super().__init__(args) | |
self.save_json_path = "new_workspace/clips_summary/movienet" | |
if args.use_openai_embedding: | |
self.save_pkls_path = "new_workspace/open_ai_embedding/movienet" | |
else: | |
self.save_pkls_path = "new_workspace/embedding/movienet" | |
os.makedirs(self.save_json_path, exist_ok=True) | |
movie_qa_dataset_path=args.annotation_path | |
with open(movie_qa_dataset_path, 'r') as f: | |
self.movies_dict = json.load(f) | |
self.max_sub_len=400 | |
self.max_num_images=45 | |
def _get_movie_data(self,videoname): | |
video_images_path =f"{args.videos_path}/{videoname}" | |
movie_clips_path =f"{args.video_clips_saving_path}/{videoname}" | |
subtitle_path = f"{args.subtitle_path}/{videoname}.srt" | |
annotation_file=f"{args.movienet_annotations_dir}/{videoname}.json" | |
# load the annotation file | |
with open(annotation_file, 'r') as f: | |
movie_annotation = json.load(f) | |
return video_images_path,subtitle_path,movie_annotation,movie_clips_path | |
def _store_subtitles_paragraphs(self,subtitle_path,important_data,number_of_paragraphs): | |
paragraphs=[] | |
movie_name=subtitle_path.split('/')[-1].split('.')[0] | |
# if there is no story, split the subtitles into paragraphs | |
paragraphs = split_subtitles(subtitle_path, number_of_paragraphs) | |
for i,paragraph in enumerate(paragraphs): | |
paragraph=clean_text(paragraph) | |
important_data.update({f"subtitle_{i}__{movie_name}_clip_{str(i).zfill(2)}": paragraph}) | |
return important_data | |
def _get_shots_subtitles(self,movie_annotation): | |
shots_subtitles={} | |
if movie_annotation['story'] is not None: | |
for section in movie_annotation['story']: | |
for shot in section['subtitle']: | |
shot_number=shot['shot'] | |
shot_subtitle=' '.join(shot['sentences']) | |
shots_subtitles[shot_number]=clean_text(shot_subtitle) | |
return shots_subtitles | |
def prepare_input_images(self,clip_path,shots_subtitles,use_subtitles): | |
total_frames=len(os.listdir(clip_path)) | |
sampling_interval=int(total_frames//self.max_num_images) | |
if sampling_interval==0: | |
sampling_interval=1 | |
images=[] | |
img_placeholder = "" | |
video_frames_path = os.path.join(clip_path) | |
total_num_frames=len(os.listdir(video_frames_path)) | |
sampling_interval = round(total_num_frames / self.max_num_images) | |
if sampling_interval == 0: | |
sampling_interval = 1 | |
number_of_words=0 | |
video_images_list=sorted(os.listdir(video_frames_path)) | |
for i,frame in enumerate(video_images_list): | |
if i % sampling_interval == 0: | |
frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB") | |
frame = self.vis_processor(frame) | |
images.append(frame) | |
img_placeholder += '<Img><ImageHere>' | |
shot_num=video_images_list[i].split('_')[1] | |
if shots_subtitles.get(shot_num) is not None: | |
sub=clean_text(shots_subtitles[shot_num]) | |
number_of_words+=len(sub.split(' ')) | |
if number_of_words<= self.max_sub_len and use_subtitles: | |
img_placeholder+=f'<Cap>{sub}' | |
if len(images) >= self.max_num_images: | |
break | |
if len(images) ==0: | |
print("Video not found",video_frames_path) | |
if 0 <len(images) < self.max_num_images: | |
last_item = images[-1] | |
while len(images) < self.max_num_images: | |
images.append(last_item) | |
img_placeholder += '<Img><ImageHere>' | |
images = torch.stack(images) | |
return images,img_placeholder | |
def _get_movie_summaries(self,video_images_path,use_subtitles,shots_subtitles,movie_clips_path): | |
video_images_list=sorted(os.listdir(video_images_path)) | |
max_caption_index = 0 | |
preds = {} | |
movie_name=movie_clips_path.split('/')[-1] | |
videos_summaries=[] | |
previous_caption="" | |
batch_size=args.batch_size | |
batch_images=[] | |
batch_instructions=[] | |
clip_numbers=[] | |
clip_number=0 | |
conversations=[] | |
for i in tqdm(range(0,len(video_images_list),135), desc="Inference video clips", total=len(video_images_list)/135): | |
images=[] | |
img_placeholder = "" | |
number_of_words=0 | |
clip_number_str=str(clip_number).zfill(2) | |
clip_path=os.path.join(movie_clips_path,f"{movie_name}_clip_{clip_number_str}") | |
os.makedirs(clip_path, exist_ok=True) | |
conversation="" | |
for j in range(i,i+135,3): | |
if j >= len(video_images_list): | |
break | |
image_path = os.path.join(video_images_path, video_images_list[j]) | |
# copy the images to clip folder | |
shutil.copy(image_path,clip_path) | |
img=Image.open(image_path) | |
images.append(self.vis_processor(img)) | |
img_placeholder += '<Img><ImageHere>' | |
shot_num=int(video_images_list[j].split('_')[1]) | |
if use_subtitles: | |
if shots_subtitles.get(shot_num) is not None: | |
sub=clean_text(shots_subtitles[shot_num]) | |
number_of_words+=len(sub.split(' ')) | |
if number_of_words<= self.max_num_words : | |
img_placeholder+=f'<Cap>{sub}' | |
conversation+=sub+" " | |
if len(images) >= self.max_num_images: | |
break | |
if len(images) ==0: | |
print("Video not found",video_images_path) | |
continue | |
if 0 <len(images) < self.max_num_images: | |
last_item = images[-1] | |
while len(images) < self.max_num_images: | |
images.append(last_item) | |
img_placeholder += '<Img><ImageHere>' | |
images = torch.stack(images) | |
print(images.shape) | |
clip_numbers.append(clip_number_str) | |
clip_number+=1 | |
conversations.append(clean_text(conversation)) | |
instruction = img_placeholder + '\n' + self.summary_instruction | |
batch_images.append(images) | |
batch_instructions.append(instruction) | |
if len(batch_images) < batch_size: | |
continue | |
# run inference for the batch | |
batch_images = torch.stack(batch_images) | |
batch_pred=self.run_images(batch_images,batch_instructions) | |
for i,pred in enumerate(batch_pred): | |
max_caption_index += 1 | |
videos_summaries.append(pred) | |
if args.use_coherent_description: | |
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}" | |
else: | |
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = pred | |
if conversations[i]!="" and use_subtitles: | |
preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = conversations[i] | |
batch_images=[] | |
batch_instructions=[] | |
clip_numbers=[] | |
conversations=[] | |
# run inference for the last batch | |
if len(batch_images)>0: | |
batch_images = torch.stack(batch_images) | |
batch_pred=self.run_images(batch_images,batch_instructions) | |
for k,pred in enumerate(batch_pred): | |
max_caption_index += 1 | |
videos_summaries.append(pred) | |
if args.use_coherent_description: | |
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[k]}" | |
else: | |
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = pred | |
if conversations[k]!="" and use_subtitles: | |
preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = conversations[k] | |
batch_images=[] | |
batch_instructions=[] | |
return preds | |
def movie_inference(self,videoname,use_subtitles): | |
embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl") | |
if args.index_subtitles_together: | |
file_path=os.path.join(self.save_json_path,f"{videoname}.json") | |
embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl") | |
else: | |
file_path=os.path.join(self.save_json_path,f"no_subtiltles_{videoname}.json") | |
embedding_path=os.path.join(self.save_pkls_path,f"no_subtiltles_{videoname}.pkl") | |
if args.subtitles_only: | |
file_path=os.path.join(self.save_json_path,f"subtiltles_only_{videoname}.json") | |
embedding_path=os.path.join(self.save_pkls_path,f"subtiltles_only_{videoname}.pkl") | |
if os.path.exists(file_path): | |
print("Already processed") | |
return file_path,embedding_path | |
important_data = {} | |
video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(videoname) | |
shots_subtitles={} | |
if use_subtitles: | |
if movie_annotation['story'] is not None: | |
shots_subtitles=self._get_shots_subtitles(movie_annotation) | |
if args.subtitles_only: | |
number_of_paragraphs=20 | |
important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs) | |
else: | |
preds=self._get_movie_summaries(video_images_path,use_subtitles,shots_subtitles,movie_clips_path) | |
if len(shots_subtitles)==0 and use_subtitles: | |
number_of_paragraphs=len(preds) | |
important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs) | |
important_data.update(preds) | |
with open(file_path, 'w') as file: | |
json.dump(important_data, file, indent=4) | |
return file_path,embedding_path | |
def answer_movie_questions_RAG(self,qa_list,external_memory): | |
# get the most similar context from the external memory to this instruction | |
related_context_keys_list=[] | |
related_context_documents_list=[] | |
related_text=[] | |
questions=[] | |
prompts=[] | |
for qa in qa_list: | |
related_context_documents,related_context_keys = external_memory.search_by_similarity(qa['question']) | |
related_context_documents_list.append(related_context_documents) | |
related_context_keys_list.append(related_context_keys) | |
questions.append(qa) | |
prompt=self.prepare_prompt(qa) | |
prompts.append(prompt) | |
if args.use_clips_for_info: | |
batch_pred,related_context_keys_list=self.use_clips_for_info(qa_list,related_context_keys_list,external_memory) | |
related_text.extend(related_context_keys_list) | |
else: | |
related_context_documents_text_list=[] | |
for related_context_documents,related_context_keys in zip(related_context_documents_list,related_context_keys_list): | |
related_information="" | |
most_related_clips=self.get_most_related_clips(related_context_keys) | |
for clip_name in most_related_clips: | |
clip_conversation="" | |
general_sum="" | |
for key in external_memory.documents.keys(): | |
if clip_name in key and 'caption' in key: | |
general_sum="Clip Summary: "+external_memory.documents[key] | |
if clip_name in key and 'subtitle' in key: | |
clip_conversation="Clip Subtitles: "+external_memory.documents[key] | |
related_information+=f"{general_sum},{clip_conversation}\n" | |
if args.model_summary_only: | |
related_information+=f"{general_sum}\n" | |
elif args.subtitles_only: | |
related_information+=f"{clip_conversation}\n" | |
else: | |
related_information+=f"{general_sum},{clip_conversation}\n" | |
related_context_documents_text_list.append(related_information) | |
if args.use_chatgpt : | |
batch_pred=self.inference_RAG_chatGPT(prompts,related_context_documents_text_list) | |
related_text.extend(related_context_documents_text_list) | |
else: | |
batch_pred=self.inference_RAG(prompts,related_context_documents_text_list) | |
related_text.extend(related_context_documents_text_list) | |
return batch_pred ,related_text | |
def get_most_related_clips(self,related_context_keys): | |
most_related_clips=[] | |
for context_key in related_context_keys: | |
if len(context_key.split('__'))>1: | |
most_related_clips.append(context_key.split('__')[1]) | |
if len(most_related_clips)==args.neighbours: | |
break | |
assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}" | |
return most_related_clips | |
def clip_inference(self,clips_name,prompts): | |
setup_seeds(seed) | |
images_batch, instructions_batch = [], [] | |
for clip_name, prompt in zip(clips_name, prompts): | |
movie_name=clip_name.split('_')[0] | |
video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(movie_name) | |
clip_path=os.path.join(movie_clips_path,clip_name) | |
if movie_annotation['story'] is not None: | |
shots_subtitles=self._get_shots_subtitles(movie_annotation) | |
else: | |
shots_subtitles={} | |
images,img_placeholder=self.prepare_input_images(clip_path,shots_subtitles,use_subtitles=not args.vision_only) | |
instruction = img_placeholder + '\n' + prompt | |
images_batch.append(images) | |
instructions_batch.append(instruction) | |
# run inference for the batch | |
images_batch=torch.stack(images_batch) | |
batch_pred=self.run_images(images_batch,instructions_batch) | |
return batch_pred | |
def prepare_prompt(self,qa): | |
prompt=qa["question"]+" \n As you watched in this video Choose ONE suitable answer from these mutiple choices \n" | |
for i,choice in enumerate(qa['choices']): | |
prompt+=f"option {i}: {choice} \n" | |
if args.add_unknown and args.add_confidance_score: | |
# Add unknown option | |
prompt+=f"option 5: Can't answer based on the provided information\n" | |
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident" | |
elif args.add_unknown: | |
prompt+=f"option 5: Can't answer based on the provided information\n" | |
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE" | |
elif args.add_confidance_score: | |
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident" | |
else: | |
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE" | |
return prompt | |
def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory): | |
total_batch_pred=[] | |
questions=[] | |
related_information_list=[] | |
related_context_keys_list_new=[] | |
for qa,related_context_keys in zip(qa_list,related_context_keys_list): | |
most_related_clips=self.get_most_related_clips(related_context_keys) | |
question=qa['question']+ "\n and these are the options for the question\n\n" | |
for i,choice in enumerate(qa['choices']): | |
question+=f"option {i}: {choice} \n\n" | |
if args.add_unknown: | |
question+= "option 5: Can't answer based on the provided information\n\n" | |
question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE" | |
else: | |
question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE" | |
if args.use_choices_for_info: | |
# prompt=self.prepare_prompt(qa) | |
# prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n" | |
prompt=f"From this video extract the related information to This multichioce question and provide an explaination for your answer and If you can't find any related inforamtion, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :" | |
else: | |
prompt=f"As you watched in this video answer this {qa['q']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n" | |
# if args.use_choices_for_info: | |
# prompt=self.prepare_prompt(qa) | |
# prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n" | |
# else: | |
# prompt=f"As you watched in this video {qa['question']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n" | |
# make the most_related_clips has unique elements (if retrival from vision summary and conversations) | |
most_related_clips=list(set(most_related_clips)) | |
# all_info=self.clip_inference(most_related_clips,[prompt]*len(most_related_clips)) | |
batch_inference=[] | |
all_info=[] | |
for related_clip in most_related_clips: | |
batch_inference.append(related_clip) | |
if len(batch_inference)<args.batch_size: | |
continue | |
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference))) | |
batch_inference=[] | |
if len(batch_inference)>0: | |
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference))) | |
related_information="" | |
for info,clip_name in zip(all_info,most_related_clips): | |
clip_conversation="" | |
general_sum="" | |
for key in external_memory.documents.keys(): | |
if clip_name in key and 'caption' in key: | |
general_sum="Clip Summary: "+external_memory.documents[key] | |
if clip_name in key and 'subtitle' in key: | |
clip_conversation="Clip Subtitles: "+external_memory.documents[key] | |
if args.use_coherent_description: | |
related_information+=f"question_related_information: {info},{general_sum}\n" | |
else: | |
# related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n" | |
# related_information+=f"question_related_information: {info},{clip_conversation}\n" | |
if args.model_summary_only: | |
related_information+=f"{general_sum},question_related_information: {info}\n" | |
elif args.info_only: | |
related_information+=f"question_related_information: {info}\n" | |
elif args.subtitles_only: | |
related_information+=f"{clip_conversation},question_related_information: {info}\n" | |
else: | |
related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n" | |
questions.append(question) | |
related_information_list.append(related_information) | |
related_context_keys.append(related_information) | |
related_context_keys_list_new.append(related_context_keys) | |
if len(questions)< args.batch_size: | |
continue | |
setup_seeds(seed) | |
if args.use_chatgpt : | |
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list) | |
else: | |
batch_pred=self.inference_RAG(questions, related_information_list) | |
for pred in batch_pred: | |
total_batch_pred.append(pred) | |
questions=[] | |
related_information_list=[] | |
if len(questions)>0: | |
setup_seeds(seed) | |
if args.use_chatgpt : | |
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list) | |
else: | |
batch_pred=self.inference_RAG(questions, related_information_list) | |
for pred in batch_pred: | |
total_batch_pred.append(pred) | |
return total_batch_pred,related_context_keys_list_new | |
def define_save_name(self): | |
save_name="subtitles" if args.index_subtitles_together else "no_subtitles" | |
save_name+="_clips_for_info" if args.use_clips_for_info else "" | |
save_name+="_chatgpt" if args.use_chatgpt else "" | |
save_name+="_vision_only" if args.vision_only else "" | |
save_name+="_model_summary_only" if args.model_summary_only else "" | |
save_name+="_subtitles_only" if args.subtitles_only else "" | |
save_name+="_choices_for_info" if args.use_choices_for_info else "" | |
save_name+="_unknown" if args.add_unknown else "" | |
save_name+="_info_only" if args.info_only else "" | |
print("save_name",save_name) | |
return save_name | |
def eval_movie_qa(self): | |
## Movie QA evaluation | |
full_questions_result=[] | |
movie_number=0 | |
start=args.start | |
end=args.end | |
for movie in tqdm(self.movies_dict.keys()): | |
# if the movie has no answer, skip it | |
if self.movies_dict[movie][0]['answer'] is None: | |
continue | |
if args.start <=movie_number < args.end: | |
save_name=self.define_save_name() | |
save_dir=f"new_workspace/results/movie_qa/{args.exp_name}/{save_name}_{args.neighbours}_neighbours" | |
if os.path.exists( f"{save_dir}/{movie}.json" ): | |
print(f"Movie {movie} already processed") | |
with open(f"{save_dir}/{movie}.json", 'r') as f: | |
pred_json = json.load(f) | |
full_questions_result.extend(pred_json) | |
continue | |
use_subtitles_while_generating_summary=not args.vision_only | |
information_RAG_path,embedding_path=self.movie_inference(movie,use_subtitles_while_generating_summary) | |
external_memory=MemoryIndex(args.neighbours, use_openai=args.use_openai_embedding) | |
if os.path.exists(embedding_path): | |
external_memory.load_embeddings_from_pkl(embedding_path) | |
else: | |
external_memory.load_documents_from_json(information_RAG_path,emdedding_path=embedding_path) | |
os.makedirs(save_dir, exist_ok=True) | |
pred_json=[] | |
batch_questions=[] | |
for qa in tqdm(self.movies_dict[movie]): | |
batch_questions.append(qa) | |
if len(batch_questions)<args.batch_size: | |
continue | |
model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,external_memory) | |
for qa,ans,related_info in zip(batch_questions,model_ans,related_text): | |
qa.update({'pred':ans}) | |
qa.update({'related_info':related_info}) | |
pred_json.append(qa) | |
batch_questions=[] | |
if len(batch_questions)>0: | |
model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,external_memory) | |
for qa,ans,related_info in zip(batch_questions,model_ans,related_text): | |
qa.update({'pred':ans}) | |
qa.update({'related_info':related_info}) | |
pred_json.append(qa) | |
full_questions_result.extend(pred_json) | |
with open(f"{save_dir}/{movie}.json", 'w') as fp: | |
json.dump(pred_json, fp) | |
print(f"Movie {movie} prediction saved to {save_dir}/{movie}_pred_{args.neighbours}.json") | |
movie_number+=1 | |
with open(f"{save_dir}/full_pred_s{start}_end{end}.json", 'w') as fp: | |
json.dump(full_questions_result, fp) | |
args=get_arguments() | |
def setup_seeds(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
import yaml | |
with open('test_configs/llama2_test_config.yaml') as file: | |
config = yaml.load(file, Loader=yaml.FullLoader) | |
seed=config['run']['seed'] | |
print("seed",seed) | |
if __name__ == "__main__": | |
setup_seeds(seed) | |
movie_qa_eval=MovieQAEval(args) | |
movie_qa_eval.eval_movie_qa() |