DeepOperateAI-Video / evaluation /eval_goldfish_movie_qa.py
weiyi01191's picture
Upload 207 files
dc80a97
import sys
import os
project_dir = os.getcwd()
sys.path.append(project_dir)
import json
from tqdm import tqdm
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds
import argparse
import json
import argparse
import torch
import re
from tqdm import tqdm
from PIL import Image
# from openai import OpenAI
from index import MemoryIndex
import pysrt
import chardet
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
import shutil
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--neighbours", type=int, default=-1)
parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment")
parser.add_argument("--add_unknown", action='store_true')
parser.add_argument("--use_chatgpt", action='store_true')
parser.add_argument("--use_choices_for_info", action='store_true')
parser.add_argument("--use_gt_information", action='store_true')
parser.add_argument("--inference_text", action='store_true')
parser.add_argument("--use_gt_information_with_distraction", action='store_true')
parser.add_argument("--num_distraction", type=int, default=2)
parser.add_argument("--add_confidance_score", action='store_true')
parser.add_argument("--use_original_video", action='store_true')
parser.add_argument("--use_video_embedding", action='store_true')
parser.add_argument("--use_clips_for_info", action='store_true')
parser.add_argument("--use_GT_video", action='store_true')
parser.add_argument("--use_gt_summary", action='store_true')
parser.add_argument("--index_subtitles", action='store_true')
parser.add_argument("--index_subtitles_together", action='store_true')
parser.add_argument("--ask_the_question_early", action='store_true')
parser.add_argument("--clip_in_ask_early", action='store_true')
parser.add_argument("--summary_with_subtitles_only", action='store_true')
parser.add_argument("--use_coherent_description", action='store_true')
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=100000, type=int)
parser.add_argument("--exp_name", type=str,default="",help="name of eval folder")
parser.add_argument("--vision_only", action='store_true')
parser.add_argument("--model_summary_only", action='store_true')
parser.add_argument("--subtitles_only", action='store_true')
parser.add_argument("--info_only", action='store_true')
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
parser.add_argument("--add_subtitles", action='store_true')
parser.add_argument("--eval_opt", type=str, default='all')
parser.add_argument("--max_new_tokens", type=int, default=300)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--lora_r", type=int, default=64)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--video_path", type=str, help="path to the video")
parser.add_argument("--use_openai_embedding",type=str2bool, default=False)
parser.add_argument("--annotation_path", type=str, help="path to the annotation file")
parser.add_argument("--videos_path", type=str, help="path to the videos directory")
parser.add_argument("--subtitle_path", type=str, help="path to the subtitles directory")
parser.add_argument("--movienet_annotations_dir", type=str, help="path to the movienet annotations directory")
parser.add_argument("--video_clips_saving_path", type=str, help="path to save the splitted small video clips")
parser.add_argument("--options", nargs="+")
return parser.parse_args()
def time_to_seconds(subrip_time):
return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000
def get_movie_time(subtitle_path):
# read the subtitle file and detect the encoding
with open(subtitle_path, 'rb') as f:
result = chardet.detect(f.read())
subtitles = pysrt.open(subtitle_path, encoding=result['encoding'])
video_time=time_to_seconds(subtitles[-1].end)
return video_time
def clean_text(subtitles_text):
# Remove unwanted characters except for letters, digits, and single quotes
subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
# Replace multiple spaces with a single space
subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
return subtitles_text.strip()
class MovieQAEval (GoldFish_LV):
def __init__(self,args):
super().__init__(args)
self.save_json_path = "new_workspace/clips_summary/movienet"
if args.use_openai_embedding:
self.save_pkls_path = "new_workspace/open_ai_embedding/movienet"
else:
self.save_pkls_path = "new_workspace/embedding/movienet"
os.makedirs(self.save_json_path, exist_ok=True)
movie_qa_dataset_path=args.annotation_path
with open(movie_qa_dataset_path, 'r') as f:
self.movies_dict = json.load(f)
self.max_sub_len=400
self.max_num_images=45
def _get_movie_data(self,videoname):
video_images_path =f"{args.videos_path}/{videoname}"
movie_clips_path =f"{args.video_clips_saving_path}/{videoname}"
subtitle_path = f"{args.subtitle_path}/{videoname}.srt"
annotation_file=f"{args.movienet_annotations_dir}/{videoname}.json"
# load the annotation file
with open(annotation_file, 'r') as f:
movie_annotation = json.load(f)
return video_images_path,subtitle_path,movie_annotation,movie_clips_path
def _store_subtitles_paragraphs(self,subtitle_path,important_data,number_of_paragraphs):
paragraphs=[]
movie_name=subtitle_path.split('/')[-1].split('.')[0]
# if there is no story, split the subtitles into paragraphs
paragraphs = split_subtitles(subtitle_path, number_of_paragraphs)
for i,paragraph in enumerate(paragraphs):
paragraph=clean_text(paragraph)
important_data.update({f"subtitle_{i}__{movie_name}_clip_{str(i).zfill(2)}": paragraph})
return important_data
def _get_shots_subtitles(self,movie_annotation):
shots_subtitles={}
if movie_annotation['story'] is not None:
for section in movie_annotation['story']:
for shot in section['subtitle']:
shot_number=shot['shot']
shot_subtitle=' '.join(shot['sentences'])
shots_subtitles[shot_number]=clean_text(shot_subtitle)
return shots_subtitles
def prepare_input_images(self,clip_path,shots_subtitles,use_subtitles):
total_frames=len(os.listdir(clip_path))
sampling_interval=int(total_frames//self.max_num_images)
if sampling_interval==0:
sampling_interval=1
images=[]
img_placeholder = ""
video_frames_path = os.path.join(clip_path)
total_num_frames=len(os.listdir(video_frames_path))
sampling_interval = round(total_num_frames / self.max_num_images)
if sampling_interval == 0:
sampling_interval = 1
number_of_words=0
video_images_list=sorted(os.listdir(video_frames_path))
for i,frame in enumerate(video_images_list):
if i % sampling_interval == 0:
frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB")
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
shot_num=video_images_list[i].split('_')[1]
if shots_subtitles.get(shot_num) is not None:
sub=clean_text(shots_subtitles[shot_num])
number_of_words+=len(sub.split(' '))
if number_of_words<= self.max_sub_len and use_subtitles:
img_placeholder+=f'<Cap>{sub}'
if len(images) >= self.max_num_images:
break
if len(images) ==0:
print("Video not found",video_frames_path)
if 0 <len(images) < self.max_num_images:
last_item = images[-1]
while len(images) < self.max_num_images:
images.append(last_item)
img_placeholder += '<Img><ImageHere>'
images = torch.stack(images)
return images,img_placeholder
def _get_movie_summaries(self,video_images_path,use_subtitles,shots_subtitles,movie_clips_path):
video_images_list=sorted(os.listdir(video_images_path))
max_caption_index = 0
preds = {}
movie_name=movie_clips_path.split('/')[-1]
videos_summaries=[]
previous_caption=""
batch_size=args.batch_size
batch_images=[]
batch_instructions=[]
clip_numbers=[]
clip_number=0
conversations=[]
for i in tqdm(range(0,len(video_images_list),135), desc="Inference video clips", total=len(video_images_list)/135):
images=[]
img_placeholder = ""
number_of_words=0
clip_number_str=str(clip_number).zfill(2)
clip_path=os.path.join(movie_clips_path,f"{movie_name}_clip_{clip_number_str}")
os.makedirs(clip_path, exist_ok=True)
conversation=""
for j in range(i,i+135,3):
if j >= len(video_images_list):
break
image_path = os.path.join(video_images_path, video_images_list[j])
# copy the images to clip folder
shutil.copy(image_path,clip_path)
img=Image.open(image_path)
images.append(self.vis_processor(img))
img_placeholder += '<Img><ImageHere>'
shot_num=int(video_images_list[j].split('_')[1])
if use_subtitles:
if shots_subtitles.get(shot_num) is not None:
sub=clean_text(shots_subtitles[shot_num])
number_of_words+=len(sub.split(' '))
if number_of_words<= self.max_num_words :
img_placeholder+=f'<Cap>{sub}'
conversation+=sub+" "
if len(images) >= self.max_num_images:
break
if len(images) ==0:
print("Video not found",video_images_path)
continue
if 0 <len(images) < self.max_num_images:
last_item = images[-1]
while len(images) < self.max_num_images:
images.append(last_item)
img_placeholder += '<Img><ImageHere>'
images = torch.stack(images)
print(images.shape)
clip_numbers.append(clip_number_str)
clip_number+=1
conversations.append(clean_text(conversation))
instruction = img_placeholder + '\n' + self.summary_instruction
batch_images.append(images)
batch_instructions.append(instruction)
if len(batch_images) < batch_size:
continue
# run inference for the batch
batch_images = torch.stack(batch_images)
batch_pred=self.run_images(batch_images,batch_instructions)
for i,pred in enumerate(batch_pred):
max_caption_index += 1
videos_summaries.append(pred)
if args.use_coherent_description:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
else:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = pred
if conversations[i]!="" and use_subtitles:
preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = conversations[i]
batch_images=[]
batch_instructions=[]
clip_numbers=[]
conversations=[]
# run inference for the last batch
if len(batch_images)>0:
batch_images = torch.stack(batch_images)
batch_pred=self.run_images(batch_images,batch_instructions)
for k,pred in enumerate(batch_pred):
max_caption_index += 1
videos_summaries.append(pred)
if args.use_coherent_description:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[k]}"
else:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = pred
if conversations[k]!="" and use_subtitles:
preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = conversations[k]
batch_images=[]
batch_instructions=[]
return preds
def movie_inference(self,videoname,use_subtitles):
embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl")
if args.index_subtitles_together:
file_path=os.path.join(self.save_json_path,f"{videoname}.json")
embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl")
else:
file_path=os.path.join(self.save_json_path,f"no_subtiltles_{videoname}.json")
embedding_path=os.path.join(self.save_pkls_path,f"no_subtiltles_{videoname}.pkl")
if args.subtitles_only:
file_path=os.path.join(self.save_json_path,f"subtiltles_only_{videoname}.json")
embedding_path=os.path.join(self.save_pkls_path,f"subtiltles_only_{videoname}.pkl")
if os.path.exists(file_path):
print("Already processed")
return file_path,embedding_path
important_data = {}
video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(videoname)
shots_subtitles={}
if use_subtitles:
if movie_annotation['story'] is not None:
shots_subtitles=self._get_shots_subtitles(movie_annotation)
if args.subtitles_only:
number_of_paragraphs=20
important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs)
else:
preds=self._get_movie_summaries(video_images_path,use_subtitles,shots_subtitles,movie_clips_path)
if len(shots_subtitles)==0 and use_subtitles:
number_of_paragraphs=len(preds)
important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs)
important_data.update(preds)
with open(file_path, 'w') as file:
json.dump(important_data, file, indent=4)
return file_path,embedding_path
def answer_movie_questions_RAG(self,qa_list,external_memory):
# get the most similar context from the external memory to this instruction
related_context_keys_list=[]
related_context_documents_list=[]
related_text=[]
questions=[]
prompts=[]
for qa in qa_list:
related_context_documents,related_context_keys = external_memory.search_by_similarity(qa['question'])
related_context_documents_list.append(related_context_documents)
related_context_keys_list.append(related_context_keys)
questions.append(qa)
prompt=self.prepare_prompt(qa)
prompts.append(prompt)
if args.use_clips_for_info:
batch_pred,related_context_keys_list=self.use_clips_for_info(qa_list,related_context_keys_list,external_memory)
related_text.extend(related_context_keys_list)
else:
related_context_documents_text_list=[]
for related_context_documents,related_context_keys in zip(related_context_documents_list,related_context_keys_list):
related_information=""
most_related_clips=self.get_most_related_clips(related_context_keys)
for clip_name in most_related_clips:
clip_conversation=""
general_sum=""
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if clip_name in key and 'subtitle' in key:
clip_conversation="Clip Subtitles: "+external_memory.documents[key]
related_information+=f"{general_sum},{clip_conversation}\n"
if args.model_summary_only:
related_information+=f"{general_sum}\n"
elif args.subtitles_only:
related_information+=f"{clip_conversation}\n"
else:
related_information+=f"{general_sum},{clip_conversation}\n"
related_context_documents_text_list.append(related_information)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(prompts,related_context_documents_text_list)
related_text.extend(related_context_documents_text_list)
else:
batch_pred=self.inference_RAG(prompts,related_context_documents_text_list)
related_text.extend(related_context_documents_text_list)
return batch_pred ,related_text
def get_most_related_clips(self,related_context_keys):
most_related_clips=[]
for context_key in related_context_keys:
if len(context_key.split('__'))>1:
most_related_clips.append(context_key.split('__')[1])
if len(most_related_clips)==args.neighbours:
break
assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}"
return most_related_clips
def clip_inference(self,clips_name,prompts):
setup_seeds(seed)
images_batch, instructions_batch = [], []
for clip_name, prompt in zip(clips_name, prompts):
movie_name=clip_name.split('_')[0]
video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(movie_name)
clip_path=os.path.join(movie_clips_path,clip_name)
if movie_annotation['story'] is not None:
shots_subtitles=self._get_shots_subtitles(movie_annotation)
else:
shots_subtitles={}
images,img_placeholder=self.prepare_input_images(clip_path,shots_subtitles,use_subtitles=not args.vision_only)
instruction = img_placeholder + '\n' + prompt
images_batch.append(images)
instructions_batch.append(instruction)
# run inference for the batch
images_batch=torch.stack(images_batch)
batch_pred=self.run_images(images_batch,instructions_batch)
return batch_pred
def prepare_prompt(self,qa):
prompt=qa["question"]+" \n As you watched in this video Choose ONE suitable answer from these mutiple choices \n"
for i,choice in enumerate(qa['choices']):
prompt+=f"option {i}: {choice} \n"
if args.add_unknown and args.add_confidance_score:
# Add unknown option
prompt+=f"option 5: Can't answer based on the provided information\n"
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident"
elif args.add_unknown:
prompt+=f"option 5: Can't answer based on the provided information\n"
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE"
elif args.add_confidance_score:
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident"
else:
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE"
return prompt
def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory):
total_batch_pred=[]
questions=[]
related_information_list=[]
related_context_keys_list_new=[]
for qa,related_context_keys in zip(qa_list,related_context_keys_list):
most_related_clips=self.get_most_related_clips(related_context_keys)
question=qa['question']+ "\n and these are the options for the question\n\n"
for i,choice in enumerate(qa['choices']):
question+=f"option {i}: {choice} \n\n"
if args.add_unknown:
question+= "option 5: Can't answer based on the provided information\n\n"
question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE"
else:
question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE"
if args.use_choices_for_info:
# prompt=self.prepare_prompt(qa)
# prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
prompt=f"From this video extract the related information to This multichioce question and provide an explaination for your answer and If you can't find any related inforamtion, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :"
else:
prompt=f"As you watched in this video answer this {qa['q']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
# if args.use_choices_for_info:
# prompt=self.prepare_prompt(qa)
# prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
# else:
# prompt=f"As you watched in this video {qa['question']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
# make the most_related_clips has unique elements (if retrival from vision summary and conversations)
most_related_clips=list(set(most_related_clips))
# all_info=self.clip_inference(most_related_clips,[prompt]*len(most_related_clips))
batch_inference=[]
all_info=[]
for related_clip in most_related_clips:
batch_inference.append(related_clip)
if len(batch_inference)<args.batch_size:
continue
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference)))
batch_inference=[]
if len(batch_inference)>0:
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference)))
related_information=""
for info,clip_name in zip(all_info,most_related_clips):
clip_conversation=""
general_sum=""
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if clip_name in key and 'subtitle' in key:
clip_conversation="Clip Subtitles: "+external_memory.documents[key]
if args.use_coherent_description:
related_information+=f"question_related_information: {info},{general_sum}\n"
else:
# related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n"
# related_information+=f"question_related_information: {info},{clip_conversation}\n"
if args.model_summary_only:
related_information+=f"{general_sum},question_related_information: {info}\n"
elif args.info_only:
related_information+=f"question_related_information: {info}\n"
elif args.subtitles_only:
related_information+=f"{clip_conversation},question_related_information: {info}\n"
else:
related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n"
questions.append(question)
related_information_list.append(related_information)
related_context_keys.append(related_information)
related_context_keys_list_new.append(related_context_keys)
if len(questions)< args.batch_size:
continue
setup_seeds(seed)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
else:
batch_pred=self.inference_RAG(questions, related_information_list)
for pred in batch_pred:
total_batch_pred.append(pred)
questions=[]
related_information_list=[]
if len(questions)>0:
setup_seeds(seed)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
else:
batch_pred=self.inference_RAG(questions, related_information_list)
for pred in batch_pred:
total_batch_pred.append(pred)
return total_batch_pred,related_context_keys_list_new
def define_save_name(self):
save_name="subtitles" if args.index_subtitles_together else "no_subtitles"
save_name+="_clips_for_info" if args.use_clips_for_info else ""
save_name+="_chatgpt" if args.use_chatgpt else ""
save_name+="_vision_only" if args.vision_only else ""
save_name+="_model_summary_only" if args.model_summary_only else ""
save_name+="_subtitles_only" if args.subtitles_only else ""
save_name+="_choices_for_info" if args.use_choices_for_info else ""
save_name+="_unknown" if args.add_unknown else ""
save_name+="_info_only" if args.info_only else ""
print("save_name",save_name)
return save_name
def eval_movie_qa(self):
## Movie QA evaluation
full_questions_result=[]
movie_number=0
start=args.start
end=args.end
for movie in tqdm(self.movies_dict.keys()):
# if the movie has no answer, skip it
if self.movies_dict[movie][0]['answer'] is None:
continue
if args.start <=movie_number < args.end:
save_name=self.define_save_name()
save_dir=f"new_workspace/results/movie_qa/{args.exp_name}/{save_name}_{args.neighbours}_neighbours"
if os.path.exists( f"{save_dir}/{movie}.json" ):
print(f"Movie {movie} already processed")
with open(f"{save_dir}/{movie}.json", 'r') as f:
pred_json = json.load(f)
full_questions_result.extend(pred_json)
continue
use_subtitles_while_generating_summary=not args.vision_only
information_RAG_path,embedding_path=self.movie_inference(movie,use_subtitles_while_generating_summary)
external_memory=MemoryIndex(args.neighbours, use_openai=args.use_openai_embedding)
if os.path.exists(embedding_path):
external_memory.load_embeddings_from_pkl(embedding_path)
else:
external_memory.load_documents_from_json(information_RAG_path,emdedding_path=embedding_path)
os.makedirs(save_dir, exist_ok=True)
pred_json=[]
batch_questions=[]
for qa in tqdm(self.movies_dict[movie]):
batch_questions.append(qa)
if len(batch_questions)<args.batch_size:
continue
model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,external_memory)
for qa,ans,related_info in zip(batch_questions,model_ans,related_text):
qa.update({'pred':ans})
qa.update({'related_info':related_info})
pred_json.append(qa)
batch_questions=[]
if len(batch_questions)>0:
model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,external_memory)
for qa,ans,related_info in zip(batch_questions,model_ans,related_text):
qa.update({'pred':ans})
qa.update({'related_info':related_info})
pred_json.append(qa)
full_questions_result.extend(pred_json)
with open(f"{save_dir}/{movie}.json", 'w') as fp:
json.dump(pred_json, fp)
print(f"Movie {movie} prediction saved to {save_dir}/{movie}_pred_{args.neighbours}.json")
movie_number+=1
with open(f"{save_dir}/full_pred_s{start}_end{end}.json", 'w') as fp:
json.dump(full_questions_result, fp)
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
if __name__ == "__main__":
setup_seeds(seed)
movie_qa_eval=MovieQAEval(args)
movie_qa_eval.eval_movie_qa()