Spaces:
Running
Running
File size: 31,429 Bytes
dc80a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import sys
import os
project_dir = os.getcwd()
sys.path.append(project_dir)
import json
from tqdm import tqdm
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds
import argparse
import json
import argparse
import torch
import re
from tqdm import tqdm
from PIL import Image
# from openai import OpenAI
from index import MemoryIndex
import pysrt
import chardet
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
import shutil
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--neighbours", type=int, default=-1)
parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment")
parser.add_argument("--add_unknown", action='store_true')
parser.add_argument("--use_chatgpt", action='store_true')
parser.add_argument("--use_choices_for_info", action='store_true')
parser.add_argument("--use_gt_information", action='store_true')
parser.add_argument("--inference_text", action='store_true')
parser.add_argument("--use_gt_information_with_distraction", action='store_true')
parser.add_argument("--num_distraction", type=int, default=2)
parser.add_argument("--add_confidance_score", action='store_true')
parser.add_argument("--use_original_video", action='store_true')
parser.add_argument("--use_video_embedding", action='store_true')
parser.add_argument("--use_clips_for_info", action='store_true')
parser.add_argument("--use_GT_video", action='store_true')
parser.add_argument("--use_gt_summary", action='store_true')
parser.add_argument("--index_subtitles", action='store_true')
parser.add_argument("--index_subtitles_together", action='store_true')
parser.add_argument("--ask_the_question_early", action='store_true')
parser.add_argument("--clip_in_ask_early", action='store_true')
parser.add_argument("--summary_with_subtitles_only", action='store_true')
parser.add_argument("--use_coherent_description", action='store_true')
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=100000, type=int)
parser.add_argument("--exp_name", type=str,default="",help="name of eval folder")
parser.add_argument("--vision_only", action='store_true')
parser.add_argument("--model_summary_only", action='store_true')
parser.add_argument("--subtitles_only", action='store_true')
parser.add_argument("--info_only", action='store_true')
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
parser.add_argument("--add_subtitles", action='store_true')
parser.add_argument("--eval_opt", type=str, default='all')
parser.add_argument("--max_new_tokens", type=int, default=300)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--lora_r", type=int, default=64)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--video_path", type=str, help="path to the video")
parser.add_argument("--use_openai_embedding",type=str2bool, default=False)
parser.add_argument("--annotation_path", type=str, help="path to the annotation file")
parser.add_argument("--videos_path", type=str, help="path to the videos directory")
parser.add_argument("--subtitle_path", type=str, help="path to the subtitles directory")
parser.add_argument("--movienet_annotations_dir", type=str, help="path to the movienet annotations directory")
parser.add_argument("--video_clips_saving_path", type=str, help="path to save the splitted small video clips")
parser.add_argument("--options", nargs="+")
return parser.parse_args()
def time_to_seconds(subrip_time):
return subrip_time.hours * 3600 + subrip_time.minutes * 60 + subrip_time.seconds + subrip_time.milliseconds / 1000
def get_movie_time(subtitle_path):
# read the subtitle file and detect the encoding
with open(subtitle_path, 'rb') as f:
result = chardet.detect(f.read())
subtitles = pysrt.open(subtitle_path, encoding=result['encoding'])
video_time=time_to_seconds(subtitles[-1].end)
return video_time
def clean_text(subtitles_text):
# Remove unwanted characters except for letters, digits, and single quotes
subtitles_text = re.sub(r'[^a-zA-Z0-9\s\']', '', subtitles_text)
# Replace multiple spaces with a single space
subtitles_text = re.sub(r'\s+', ' ', subtitles_text)
return subtitles_text.strip()
class MovieQAEval (GoldFish_LV):
def __init__(self,args):
super().__init__(args)
self.save_json_path = "new_workspace/clips_summary/movienet"
if args.use_openai_embedding:
self.save_pkls_path = "new_workspace/open_ai_embedding/movienet"
else:
self.save_pkls_path = "new_workspace/embedding/movienet"
os.makedirs(self.save_json_path, exist_ok=True)
movie_qa_dataset_path=args.annotation_path
with open(movie_qa_dataset_path, 'r') as f:
self.movies_dict = json.load(f)
self.max_sub_len=400
self.max_num_images=45
def _get_movie_data(self,videoname):
video_images_path =f"{args.videos_path}/{videoname}"
movie_clips_path =f"{args.video_clips_saving_path}/{videoname}"
subtitle_path = f"{args.subtitle_path}/{videoname}.srt"
annotation_file=f"{args.movienet_annotations_dir}/{videoname}.json"
# load the annotation file
with open(annotation_file, 'r') as f:
movie_annotation = json.load(f)
return video_images_path,subtitle_path,movie_annotation,movie_clips_path
def _store_subtitles_paragraphs(self,subtitle_path,important_data,number_of_paragraphs):
paragraphs=[]
movie_name=subtitle_path.split('/')[-1].split('.')[0]
# if there is no story, split the subtitles into paragraphs
paragraphs = split_subtitles(subtitle_path, number_of_paragraphs)
for i,paragraph in enumerate(paragraphs):
paragraph=clean_text(paragraph)
important_data.update({f"subtitle_{i}__{movie_name}_clip_{str(i).zfill(2)}": paragraph})
return important_data
def _get_shots_subtitles(self,movie_annotation):
shots_subtitles={}
if movie_annotation['story'] is not None:
for section in movie_annotation['story']:
for shot in section['subtitle']:
shot_number=shot['shot']
shot_subtitle=' '.join(shot['sentences'])
shots_subtitles[shot_number]=clean_text(shot_subtitle)
return shots_subtitles
def prepare_input_images(self,clip_path,shots_subtitles,use_subtitles):
total_frames=len(os.listdir(clip_path))
sampling_interval=int(total_frames//self.max_num_images)
if sampling_interval==0:
sampling_interval=1
images=[]
img_placeholder = ""
video_frames_path = os.path.join(clip_path)
total_num_frames=len(os.listdir(video_frames_path))
sampling_interval = round(total_num_frames / self.max_num_images)
if sampling_interval == 0:
sampling_interval = 1
number_of_words=0
video_images_list=sorted(os.listdir(video_frames_path))
for i,frame in enumerate(video_images_list):
if i % sampling_interval == 0:
frame = Image.open(os.path.join(video_frames_path,frame)).convert("RGB")
frame = self.vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
shot_num=video_images_list[i].split('_')[1]
if shots_subtitles.get(shot_num) is not None:
sub=clean_text(shots_subtitles[shot_num])
number_of_words+=len(sub.split(' '))
if number_of_words<= self.max_sub_len and use_subtitles:
img_placeholder+=f'<Cap>{sub}'
if len(images) >= self.max_num_images:
break
if len(images) ==0:
print("Video not found",video_frames_path)
if 0 <len(images) < self.max_num_images:
last_item = images[-1]
while len(images) < self.max_num_images:
images.append(last_item)
img_placeholder += '<Img><ImageHere>'
images = torch.stack(images)
return images,img_placeholder
def _get_movie_summaries(self,video_images_path,use_subtitles,shots_subtitles,movie_clips_path):
video_images_list=sorted(os.listdir(video_images_path))
max_caption_index = 0
preds = {}
movie_name=movie_clips_path.split('/')[-1]
videos_summaries=[]
previous_caption=""
batch_size=args.batch_size
batch_images=[]
batch_instructions=[]
clip_numbers=[]
clip_number=0
conversations=[]
for i in tqdm(range(0,len(video_images_list),135), desc="Inference video clips", total=len(video_images_list)/135):
images=[]
img_placeholder = ""
number_of_words=0
clip_number_str=str(clip_number).zfill(2)
clip_path=os.path.join(movie_clips_path,f"{movie_name}_clip_{clip_number_str}")
os.makedirs(clip_path, exist_ok=True)
conversation=""
for j in range(i,i+135,3):
if j >= len(video_images_list):
break
image_path = os.path.join(video_images_path, video_images_list[j])
# copy the images to clip folder
shutil.copy(image_path,clip_path)
img=Image.open(image_path)
images.append(self.vis_processor(img))
img_placeholder += '<Img><ImageHere>'
shot_num=int(video_images_list[j].split('_')[1])
if use_subtitles:
if shots_subtitles.get(shot_num) is not None:
sub=clean_text(shots_subtitles[shot_num])
number_of_words+=len(sub.split(' '))
if number_of_words<= self.max_num_words :
img_placeholder+=f'<Cap>{sub}'
conversation+=sub+" "
if len(images) >= self.max_num_images:
break
if len(images) ==0:
print("Video not found",video_images_path)
continue
if 0 <len(images) < self.max_num_images:
last_item = images[-1]
while len(images) < self.max_num_images:
images.append(last_item)
img_placeholder += '<Img><ImageHere>'
images = torch.stack(images)
print(images.shape)
clip_numbers.append(clip_number_str)
clip_number+=1
conversations.append(clean_text(conversation))
instruction = img_placeholder + '\n' + self.summary_instruction
batch_images.append(images)
batch_instructions.append(instruction)
if len(batch_images) < batch_size:
continue
# run inference for the batch
batch_images = torch.stack(batch_images)
batch_pred=self.run_images(batch_images,batch_instructions)
for i,pred in enumerate(batch_pred):
max_caption_index += 1
videos_summaries.append(pred)
if args.use_coherent_description:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[i]}"
else:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = pred
if conversations[i]!="" and use_subtitles:
preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[i]}'] = conversations[i]
batch_images=[]
batch_instructions=[]
clip_numbers=[]
conversations=[]
# run inference for the last batch
if len(batch_images)>0:
batch_images = torch.stack(batch_images)
batch_pred=self.run_images(batch_images,batch_instructions)
for k,pred in enumerate(batch_pred):
max_caption_index += 1
videos_summaries.append(pred)
if args.use_coherent_description:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = f"model_summary :{pred}\nVideo conversation :{conversations[k]}"
else:
preds[f'caption_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = pred
if conversations[k]!="" and use_subtitles:
preds[f'subtitle_{max_caption_index}__{movie_name}_clip_{clip_numbers[k]}'] = conversations[k]
batch_images=[]
batch_instructions=[]
return preds
def movie_inference(self,videoname,use_subtitles):
embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl")
if args.index_subtitles_together:
file_path=os.path.join(self.save_json_path,f"{videoname}.json")
embedding_path=os.path.join(self.save_pkls_path,f"{videoname}.pkl")
else:
file_path=os.path.join(self.save_json_path,f"no_subtiltles_{videoname}.json")
embedding_path=os.path.join(self.save_pkls_path,f"no_subtiltles_{videoname}.pkl")
if args.subtitles_only:
file_path=os.path.join(self.save_json_path,f"subtiltles_only_{videoname}.json")
embedding_path=os.path.join(self.save_pkls_path,f"subtiltles_only_{videoname}.pkl")
if os.path.exists(file_path):
print("Already processed")
return file_path,embedding_path
important_data = {}
video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(videoname)
shots_subtitles={}
if use_subtitles:
if movie_annotation['story'] is not None:
shots_subtitles=self._get_shots_subtitles(movie_annotation)
if args.subtitles_only:
number_of_paragraphs=20
important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs)
else:
preds=self._get_movie_summaries(video_images_path,use_subtitles,shots_subtitles,movie_clips_path)
if len(shots_subtitles)==0 and use_subtitles:
number_of_paragraphs=len(preds)
important_data=self._store_subtitles_paragraphs(subtitle_path,important_data,number_of_paragraphs)
important_data.update(preds)
with open(file_path, 'w') as file:
json.dump(important_data, file, indent=4)
return file_path,embedding_path
def answer_movie_questions_RAG(self,qa_list,external_memory):
# get the most similar context from the external memory to this instruction
related_context_keys_list=[]
related_context_documents_list=[]
related_text=[]
questions=[]
prompts=[]
for qa in qa_list:
related_context_documents,related_context_keys = external_memory.search_by_similarity(qa['question'])
related_context_documents_list.append(related_context_documents)
related_context_keys_list.append(related_context_keys)
questions.append(qa)
prompt=self.prepare_prompt(qa)
prompts.append(prompt)
if args.use_clips_for_info:
batch_pred,related_context_keys_list=self.use_clips_for_info(qa_list,related_context_keys_list,external_memory)
related_text.extend(related_context_keys_list)
else:
related_context_documents_text_list=[]
for related_context_documents,related_context_keys in zip(related_context_documents_list,related_context_keys_list):
related_information=""
most_related_clips=self.get_most_related_clips(related_context_keys)
for clip_name in most_related_clips:
clip_conversation=""
general_sum=""
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if clip_name in key and 'subtitle' in key:
clip_conversation="Clip Subtitles: "+external_memory.documents[key]
related_information+=f"{general_sum},{clip_conversation}\n"
if args.model_summary_only:
related_information+=f"{general_sum}\n"
elif args.subtitles_only:
related_information+=f"{clip_conversation}\n"
else:
related_information+=f"{general_sum},{clip_conversation}\n"
related_context_documents_text_list.append(related_information)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(prompts,related_context_documents_text_list)
related_text.extend(related_context_documents_text_list)
else:
batch_pred=self.inference_RAG(prompts,related_context_documents_text_list)
related_text.extend(related_context_documents_text_list)
return batch_pred ,related_text
def get_most_related_clips(self,related_context_keys):
most_related_clips=[]
for context_key in related_context_keys:
if len(context_key.split('__'))>1:
most_related_clips.append(context_key.split('__')[1])
if len(most_related_clips)==args.neighbours:
break
assert len(most_related_clips)!=0, f"No related clips found {related_context_keys}"
return most_related_clips
def clip_inference(self,clips_name,prompts):
setup_seeds(seed)
images_batch, instructions_batch = [], []
for clip_name, prompt in zip(clips_name, prompts):
movie_name=clip_name.split('_')[0]
video_images_path,subtitle_path,movie_annotation,movie_clips_path=self._get_movie_data(movie_name)
clip_path=os.path.join(movie_clips_path,clip_name)
if movie_annotation['story'] is not None:
shots_subtitles=self._get_shots_subtitles(movie_annotation)
else:
shots_subtitles={}
images,img_placeholder=self.prepare_input_images(clip_path,shots_subtitles,use_subtitles=not args.vision_only)
instruction = img_placeholder + '\n' + prompt
images_batch.append(images)
instructions_batch.append(instruction)
# run inference for the batch
images_batch=torch.stack(images_batch)
batch_pred=self.run_images(images_batch,instructions_batch)
return batch_pred
def prepare_prompt(self,qa):
prompt=qa["question"]+" \n As you watched in this video Choose ONE suitable answer from these mutiple choices \n"
for i,choice in enumerate(qa['choices']):
prompt+=f"option {i}: {choice} \n"
if args.add_unknown and args.add_confidance_score:
# Add unknown option
prompt+=f"option 5: Can't answer based on the provided information\n"
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident"
elif args.add_unknown:
prompt+=f"option 5: Can't answer based on the provided information\n"
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE"
elif args.add_confidance_score:
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE and aslo output a CONFIDANCE SCORE FROM 0 TO 5 representing how confident you are with your answer where 0 is the least confident and 5 is the most confident"
else:
prompt+="Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE"
return prompt
def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory):
total_batch_pred=[]
questions=[]
related_information_list=[]
related_context_keys_list_new=[]
for qa,related_context_keys in zip(qa_list,related_context_keys_list):
most_related_clips=self.get_most_related_clips(related_context_keys)
question=qa['question']+ "\n and these are the options for the question\n\n"
for i,choice in enumerate(qa['choices']):
question+=f"option {i}: {choice} \n\n"
if args.add_unknown:
question+= "option 5: Can't answer based on the provided information\n\n"
question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 5 INCLUSIVE"
else:
question+="\n Your output should be THE NUMBER OF THE CORRECT ANSWER FROM THE CHOICES FROM 0 TO 4 INCLUSIVE"
if args.use_choices_for_info:
# prompt=self.prepare_prompt(qa)
# prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
prompt=f"From this video extract the related information to This multichioce question and provide an explaination for your answer and If you can't find any related inforamtion, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :"
else:
prompt=f"As you watched in this video answer this {qa['q']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
# if args.use_choices_for_info:
# prompt=self.prepare_prompt(qa)
# prompt+=" and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
# else:
# prompt=f"As you watched in this video {qa['question']}\n\n and also provide an EXPLAINATION for your answer and If you don't know the answer, say that you don't know.\n\n"
# make the most_related_clips has unique elements (if retrival from vision summary and conversations)
most_related_clips=list(set(most_related_clips))
# all_info=self.clip_inference(most_related_clips,[prompt]*len(most_related_clips))
batch_inference=[]
all_info=[]
for related_clip in most_related_clips:
batch_inference.append(related_clip)
if len(batch_inference)<args.batch_size:
continue
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference)))
batch_inference=[]
if len(batch_inference)>0:
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference)))
related_information=""
for info,clip_name in zip(all_info,most_related_clips):
clip_conversation=""
general_sum=""
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if clip_name in key and 'subtitle' in key:
clip_conversation="Clip Subtitles: "+external_memory.documents[key]
if args.use_coherent_description:
related_information+=f"question_related_information: {info},{general_sum}\n"
else:
# related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n"
# related_information+=f"question_related_information: {info},{clip_conversation}\n"
if args.model_summary_only:
related_information+=f"{general_sum},question_related_information: {info}\n"
elif args.info_only:
related_information+=f"question_related_information: {info}\n"
elif args.subtitles_only:
related_information+=f"{clip_conversation},question_related_information: {info}\n"
else:
related_information+=f"{general_sum},{clip_conversation},question_related_information: {info}\n"
questions.append(question)
related_information_list.append(related_information)
related_context_keys.append(related_information)
related_context_keys_list_new.append(related_context_keys)
if len(questions)< args.batch_size:
continue
setup_seeds(seed)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
else:
batch_pred=self.inference_RAG(questions, related_information_list)
for pred in batch_pred:
total_batch_pred.append(pred)
questions=[]
related_information_list=[]
if len(questions)>0:
setup_seeds(seed)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
else:
batch_pred=self.inference_RAG(questions, related_information_list)
for pred in batch_pred:
total_batch_pred.append(pred)
return total_batch_pred,related_context_keys_list_new
def define_save_name(self):
save_name="subtitles" if args.index_subtitles_together else "no_subtitles"
save_name+="_clips_for_info" if args.use_clips_for_info else ""
save_name+="_chatgpt" if args.use_chatgpt else ""
save_name+="_vision_only" if args.vision_only else ""
save_name+="_model_summary_only" if args.model_summary_only else ""
save_name+="_subtitles_only" if args.subtitles_only else ""
save_name+="_choices_for_info" if args.use_choices_for_info else ""
save_name+="_unknown" if args.add_unknown else ""
save_name+="_info_only" if args.info_only else ""
print("save_name",save_name)
return save_name
def eval_movie_qa(self):
## Movie QA evaluation
full_questions_result=[]
movie_number=0
start=args.start
end=args.end
for movie in tqdm(self.movies_dict.keys()):
# if the movie has no answer, skip it
if self.movies_dict[movie][0]['answer'] is None:
continue
if args.start <=movie_number < args.end:
save_name=self.define_save_name()
save_dir=f"new_workspace/results/movie_qa/{args.exp_name}/{save_name}_{args.neighbours}_neighbours"
if os.path.exists( f"{save_dir}/{movie}.json" ):
print(f"Movie {movie} already processed")
with open(f"{save_dir}/{movie}.json", 'r') as f:
pred_json = json.load(f)
full_questions_result.extend(pred_json)
continue
use_subtitles_while_generating_summary=not args.vision_only
information_RAG_path,embedding_path=self.movie_inference(movie,use_subtitles_while_generating_summary)
external_memory=MemoryIndex(args.neighbours, use_openai=args.use_openai_embedding)
if os.path.exists(embedding_path):
external_memory.load_embeddings_from_pkl(embedding_path)
else:
external_memory.load_documents_from_json(information_RAG_path,emdedding_path=embedding_path)
os.makedirs(save_dir, exist_ok=True)
pred_json=[]
batch_questions=[]
for qa in tqdm(self.movies_dict[movie]):
batch_questions.append(qa)
if len(batch_questions)<args.batch_size:
continue
model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,external_memory)
for qa,ans,related_info in zip(batch_questions,model_ans,related_text):
qa.update({'pred':ans})
qa.update({'related_info':related_info})
pred_json.append(qa)
batch_questions=[]
if len(batch_questions)>0:
model_ans,related_text=self.answer_movie_questions_RAG(batch_questions,external_memory)
for qa,ans,related_info in zip(batch_questions,model_ans,related_text):
qa.update({'pred':ans})
qa.update({'related_info':related_info})
pred_json.append(qa)
full_questions_result.extend(pred_json)
with open(f"{save_dir}/{movie}.json", 'w') as fp:
json.dump(pred_json, fp)
print(f"Movie {movie} prediction saved to {save_dir}/{movie}_pred_{args.neighbours}.json")
movie_number+=1
with open(f"{save_dir}/full_pred_s{start}_end{end}.json", 'w') as fp:
json.dump(full_questions_result, fp)
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
if __name__ == "__main__":
setup_seeds(seed)
movie_qa_eval=MovieQAEval(args)
movie_qa_eval.eval_movie_qa() |