wangzerui's picture
Upload folder using huggingface_hub
4ed8ca0 verified
raw
history blame
7.87 kB
import os
import requests
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from ..utils import decorate_all_methods, get_next_weekday
# from finrobot.utils import decorate_all_methods, get_next_weekday
from functools import wraps
from typing import Annotated
def init_fmp_api(func):
@wraps(func)
def wrapper(*args, **kwargs):
global fmp_api_key
if os.environ.get("FMP_API_KEY") is None:
print("Please set the environment variable FMP_API_KEY to use the FMP API.")
return None
else:
fmp_api_key = os.environ["FMP_API_KEY"]
print("FMP api key found successfully.")
return func(*args, **kwargs)
return wrapper
@decorate_all_methods(init_fmp_api)
class FMPUtils:
def get_target_price(
ticker_symbol: Annotated[str, "ticker symbol"],
date: Annotated[str, "date of the target price, should be 'yyyy-mm-dd'"],
) -> str:
"""Get the target price for a given stock on a given date"""
# API URL
url = f"https://financialmodelingprep.com/api/v4/price-target?symbol={ticker_symbol}&apikey={fmp_api_key}"
# 发送GET请求
price_target = "Not Given"
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 解析JSON数据
data = response.json()
est = []
date = datetime.strptime(date, "%Y-%m-%d")
for tprice in data:
tdate = tprice["publishedDate"].split("T")[0]
tdate = datetime.strptime(tdate, "%Y-%m-%d")
if abs((tdate - date).days) <= 1:
est.append(tprice["priceTarget"])
if est:
price_target = f"{np.min(est)} - {np.max(est)} (md. {np.median(est)})"
else:
price_target = "N/A"
else:
return f"Failed to retrieve data: {response.status_code}"
return price_target
def get_sec_report(
ticker_symbol: Annotated[str, "ticker symbol"],
fyear: Annotated[
str,
"year of the 10-K report, should be 'yyyy' or 'latest'. Default to 'latest'",
] = "latest",
) -> str:
"""Get the url and filing date of the 10-K report for a given stock and year"""
url = f"https://financialmodelingprep.com/api/v3/sec_filings/{ticker_symbol}?type=10-k&page=0&apikey={fmp_api_key}"
# 发送GET请求
filing_url = None
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 解析JSON数据
data = response.json()
# print(data)
if fyear == "latest":
filing_url = data[0]["finalLink"]
filing_date = data[0]["fillingDate"]
else:
for filing in data:
if filing["fillingDate"].split("-")[0] == fyear:
filing_url = filing["finalLink"]
filing_date = filing["fillingDate"]
break
return f"Link: {filing_url}\nFiling Date: {filing_date}"
else:
return f"Failed to retrieve data: {response.status_code}"
def get_historical_market_cap(
ticker_symbol: Annotated[str, "ticker symbol"],
date: Annotated[str, "date of the market cap, should be 'yyyy-mm-dd'"],
) -> str:
"""Get the historical market capitalization for a given stock on a given date"""
date = get_next_weekday(date).strftime("%Y-%m-%d")
url = f"https://financialmodelingprep.com/api/v3/historical-market-capitalization/{ticker_symbol}?limit=100&from={date}&to={date}&apikey={fmp_api_key}"
# 发送GET请求
mkt_cap = None
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 解析JSON数据
data = response.json()
mkt_cap = data[0]["marketCap"]
return mkt_cap
else:
return f"Failed to retrieve data: {response.status_code}"
def get_historical_bvps(
ticker_symbol: Annotated[str, "ticker symbol"],
target_date: Annotated[str, "date of the BVPS, should be 'yyyy-mm-dd'"],
) -> str:
"""Get the historical book value per share for a given stock on a given date"""
# 从FMP API获取历史关键财务指标数据
url = f"https://financialmodelingprep.com/api/v3/key-metrics/{ticker_symbol}?limit=40&apikey={fmp_api_key}"
response = requests.get(url)
data = response.json()
if not data:
return "No data available"
# 找到最接近目标日期的数据
closest_data = None
min_date_diff = float("inf")
target_date = datetime.strptime(target_date, "%Y-%m-%d")
for entry in data:
date_of_data = datetime.strptime(entry["date"], "%Y-%m-%d")
date_diff = abs(target_date - date_of_data).days
if date_diff < min_date_diff:
min_date_diff = date_diff
closest_data = entry
if closest_data:
return closest_data.get("bookValuePerShare", "No BVPS data available")
else:
return "No close date data found"
def get_financial_metrics(
ticker_symbol: Annotated[str, "ticker symbol"],
years: Annotated[int, "number of the years to search from, default to 4"] = 4,
):
"""Get the financial metrics for a given stock for the last 'years' years"""
# Base URL setup for FMP API
base_url = "https://financialmodelingprep.com/api/v3"
# Create DataFrame
df = pd.DataFrame()
# Iterate over the last 'years' years of data
for year_offset in range(years):
# Construct URL for income statement and ratios for each year
income_statement_url = f"{base_url}/income-statement/{ticker_symbol}?limit={years}&apikey={fmp_api_key}"
ratios_url = (
f"{base_url}/ratios/{ticker_symbol}?limit={years}&apikey={fmp_api_key}"
)
key_metrics_url = f"{base_url}/key-metrics/{ticker_symbol}?limit={years}&apikey={fmp_api_key}"
# Requesting data from the API
income_data = requests.get(income_statement_url).json()
key_metrics_data = requests.get(key_metrics_url).json()
ratios_data = requests.get(ratios_url).json()
# Extracting needed metrics for each year
if income_data and key_metrics_data and ratios_data:
metrics = {
"Operating Revenue": income_data[year_offset]["revenue"] / 1e6,
"Adjusted Net Profit": income_data[year_offset]["netIncome"] / 1e6,
"Adjusted EPS": income_data[year_offset]["eps"],
"EBIT Margin": ratios_data[year_offset]["ebitPerRevenue"],
"ROE": key_metrics_data[year_offset]["roe"],
"PE Ratio": ratios_data[year_offset]["priceEarningsRatio"],
"EV/EBITDA": key_metrics_data[year_offset][
"enterpriseValueOverEBITDA"
],
"PB Ratio": key_metrics_data[year_offset]["pbRatio"],
}
# Append the year and metrics to the DataFrame
# Extracting the year from the date
year = income_data[year_offset]["date"][:4]
df[year] = pd.Series(metrics)
df = df.sort_index(axis=1)
df = df.round(2)
return df
if __name__ == "__main__":
from finrobot.utils import register_keys_from_json
register_keys_from_json("config_api_keys")
FMPUtils.get_sec_report("MSFT", "2023")