File size: 7,867 Bytes
4ed8ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import requests
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from ..utils import decorate_all_methods, get_next_weekday

# from finrobot.utils import decorate_all_methods, get_next_weekday
from functools import wraps
from typing import Annotated


def init_fmp_api(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        global fmp_api_key
        if os.environ.get("FMP_API_KEY") is None:
            print("Please set the environment variable FMP_API_KEY to use the FMP API.")
            return None
        else:
            fmp_api_key = os.environ["FMP_API_KEY"]
            print("FMP api key found successfully.")
            return func(*args, **kwargs)

    return wrapper


@decorate_all_methods(init_fmp_api)
class FMPUtils:

    def get_target_price(
        ticker_symbol: Annotated[str, "ticker symbol"],
        date: Annotated[str, "date of the target price, should be 'yyyy-mm-dd'"],
    ) -> str:
        """Get the target price for a given stock on a given date"""
        # API URL
        url = f"https://financialmodelingprep.com/api/v4/price-target?symbol={ticker_symbol}&apikey={fmp_api_key}"

        # 发送GET请求
        price_target = "Not Given"
        response = requests.get(url)

        # 确保请求成功
        if response.status_code == 200:
            # 解析JSON数据
            data = response.json()
            est = []

            date = datetime.strptime(date, "%Y-%m-%d")
            for tprice in data:
                tdate = tprice["publishedDate"].split("T")[0]
                tdate = datetime.strptime(tdate, "%Y-%m-%d")
                if abs((tdate - date).days) <= 1:
                    est.append(tprice["priceTarget"])

            if est:
                price_target = f"{np.min(est)} - {np.max(est)} (md. {np.median(est)})"
            else:
                price_target = "N/A"
        else:
            return f"Failed to retrieve data: {response.status_code}"

        return price_target

    def get_sec_report(
        ticker_symbol: Annotated[str, "ticker symbol"],
        fyear: Annotated[
            str,
            "year of the 10-K report, should be 'yyyy' or 'latest'. Default to 'latest'",
        ] = "latest",
    ) -> str:
        """Get the url and filing date of the 10-K report for a given stock and year"""

        url = f"https://financialmodelingprep.com/api/v3/sec_filings/{ticker_symbol}?type=10-k&page=0&apikey={fmp_api_key}"

        # 发送GET请求
        filing_url = None
        response = requests.get(url)

        # 确保请求成功
        if response.status_code == 200:
            # 解析JSON数据
            data = response.json()
            # print(data)
            if fyear == "latest":
                filing_url = data[0]["finalLink"]
                filing_date = data[0]["fillingDate"]
            else:
                for filing in data:
                    if filing["fillingDate"].split("-")[0] == fyear:
                        filing_url = filing["finalLink"]
                        filing_date = filing["fillingDate"]
                        break

            return f"Link: {filing_url}\nFiling Date: {filing_date}"
        else:
            return f"Failed to retrieve data: {response.status_code}"

    def get_historical_market_cap(
        ticker_symbol: Annotated[str, "ticker symbol"],
        date: Annotated[str, "date of the market cap, should be 'yyyy-mm-dd'"],
    ) -> str:
        """Get the historical market capitalization for a given stock on a given date"""
        date = get_next_weekday(date).strftime("%Y-%m-%d")
        url = f"https://financialmodelingprep.com/api/v3/historical-market-capitalization/{ticker_symbol}?limit=100&from={date}&to={date}&apikey={fmp_api_key}"

        # 发送GET请求
        mkt_cap = None
        response = requests.get(url)

        # 确保请求成功
        if response.status_code == 200:
            # 解析JSON数据
            data = response.json()
            mkt_cap = data[0]["marketCap"]
            return mkt_cap
        else:
            return f"Failed to retrieve data: {response.status_code}"

    def get_historical_bvps(
        ticker_symbol: Annotated[str, "ticker symbol"],
        target_date: Annotated[str, "date of the BVPS, should be 'yyyy-mm-dd'"],
    ) -> str:
        """Get the historical book value per share for a given stock on a given date"""
        # 从FMP API获取历史关键财务指标数据
        url = f"https://financialmodelingprep.com/api/v3/key-metrics/{ticker_symbol}?limit=40&apikey={fmp_api_key}"
        response = requests.get(url)
        data = response.json()

        if not data:
            return "No data available"

        # 找到最接近目标日期的数据
        closest_data = None
        min_date_diff = float("inf")
        target_date = datetime.strptime(target_date, "%Y-%m-%d")
        for entry in data:
            date_of_data = datetime.strptime(entry["date"], "%Y-%m-%d")
            date_diff = abs(target_date - date_of_data).days
            if date_diff < min_date_diff:
                min_date_diff = date_diff
                closest_data = entry

        if closest_data:
            return closest_data.get("bookValuePerShare", "No BVPS data available")
        else:
            return "No close date data found"

    def get_financial_metrics(
        ticker_symbol: Annotated[str, "ticker symbol"],
        years: Annotated[int, "number of the years to search from, default to 4"] = 4,
    ):
        """Get the financial metrics for a given stock for the last 'years' years"""
        # Base URL setup for FMP API
        base_url = "https://financialmodelingprep.com/api/v3"
        # Create DataFrame
        df = pd.DataFrame()

        # Iterate over the last 'years' years of data
        for year_offset in range(years):
            # Construct URL for income statement and ratios for each year
            income_statement_url = f"{base_url}/income-statement/{ticker_symbol}?limit={years}&apikey={fmp_api_key}"
            ratios_url = (
                f"{base_url}/ratios/{ticker_symbol}?limit={years}&apikey={fmp_api_key}"
            )
            key_metrics_url = f"{base_url}/key-metrics/{ticker_symbol}?limit={years}&apikey={fmp_api_key}"

            # Requesting data from the API
            income_data = requests.get(income_statement_url).json()
            key_metrics_data = requests.get(key_metrics_url).json()
            ratios_data = requests.get(ratios_url).json()

            # Extracting needed metrics for each year
            if income_data and key_metrics_data and ratios_data:
                metrics = {
                    "Operating Revenue": income_data[year_offset]["revenue"] / 1e6,
                    "Adjusted Net Profit": income_data[year_offset]["netIncome"] / 1e6,
                    "Adjusted EPS": income_data[year_offset]["eps"],
                    "EBIT Margin": ratios_data[year_offset]["ebitPerRevenue"],
                    "ROE": key_metrics_data[year_offset]["roe"],
                    "PE Ratio": ratios_data[year_offset]["priceEarningsRatio"],
                    "EV/EBITDA": key_metrics_data[year_offset][
                        "enterpriseValueOverEBITDA"
                    ],
                    "PB Ratio": key_metrics_data[year_offset]["pbRatio"],
                }
                # Append the year and metrics to the DataFrame
                # Extracting the year from the date
                year = income_data[year_offset]["date"][:4]
                df[year] = pd.Series(metrics)
        df = df.sort_index(axis=1)
        df = df.round(2)
        return df


if __name__ == "__main__":
    from finrobot.utils import register_keys_from_json

    register_keys_from_json("config_api_keys")
    FMPUtils.get_sec_report("MSFT", "2023")