wangzerui commited on
Commit
9357bc1
·
1 Parent(s): b7235ce
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -3,7 +3,7 @@ import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import gradio as gr
5
  from peft import PeftModel
6
- import spaces # Ensure spaces is imported
7
 
8
  # Define the base model ID
9
  base_model_id = "meta-llama/Llama-2-13b-hf"
@@ -17,7 +17,7 @@ if not huggingface_token:
17
  base_model = AutoModelForCausalLM.from_pretrained(
18
  base_model_id,
19
  trust_remote_code=True,
20
- token=huggingface_token # Use the token parameter
21
  ).to("cuda") # Move model to CUDA
22
 
23
  # Load the tokenizer
@@ -25,7 +25,7 @@ tokenizer = AutoTokenizer.from_pretrained(
25
  base_model_id,
26
  add_bos_token=True,
27
  trust_remote_code=True,
28
- token=huggingface_token
29
  )
30
 
31
  # Load the fine-tuned model and move to CUDA
@@ -54,6 +54,9 @@ def generate_skills(job_description):
54
  else:
55
  skills_text = generated_text[skills_start_index:].strip()
56
 
 
 
 
57
  return skills_text
58
 
59
  # Define the Gradio interface
@@ -61,4 +64,4 @@ inputs = gr.Textbox(lines=10, label="Job description:", placeholder="Enter or pa
61
  outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...")
62
 
63
  gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis",
64
- description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch()
 
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import gradio as gr
5
  from peft import PeftModel
6
+ import spaces
7
 
8
  # Define the base model ID
9
  base_model_id = "meta-llama/Llama-2-13b-hf"
 
17
  base_model = AutoModelForCausalLM.from_pretrained(
18
  base_model_id,
19
  trust_remote_code=True,
20
+ use_auth_token=huggingface_token # Use the correct parameter
21
  ).to("cuda") # Move model to CUDA
22
 
23
  # Load the tokenizer
 
25
  base_model_id,
26
  add_bos_token=True,
27
  trust_remote_code=True,
28
+ use_auth_token=huggingface_token
29
  )
30
 
31
  # Load the fine-tuned model and move to CUDA
 
54
  else:
55
  skills_text = generated_text[skills_start_index:].strip()
56
 
57
+ # Clear CUDA memory
58
+ torch.cuda.empty_cache()
59
+
60
  return skills_text
61
 
62
  # Define the Gradio interface
 
64
  outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...")
65
 
66
  gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis",
67
+ description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch(share=True)