wangzerui commited on
Commit
b7235ce
·
1 Parent(s): 57e278b
Files changed (1) hide show
  1. app.py +6 -11
app.py CHANGED
@@ -13,28 +13,23 @@ huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
13
  if not huggingface_token:
14
  raise Exception("Hugging Face token not found. Please set it as an environment variable 'HUGGINGFACE_TOKEN'.")
15
 
16
- # Define cache directory
17
- cache_dir = "./cache"
18
-
19
  # Load the base model without quantization configuration
20
  base_model = AutoModelForCausalLM.from_pretrained(
21
  base_model_id,
22
  trust_remote_code=True,
23
- token=huggingface_token, # Use the token parameter
24
- cache_dir=cache_dir # Specify cache directory
25
- )
26
 
27
  # Load the tokenizer
28
  tokenizer = AutoTokenizer.from_pretrained(
29
  base_model_id,
30
  add_bos_token=True,
31
  trust_remote_code=True,
32
- token=huggingface_token,
33
- cache_dir=cache_dir # Specify cache directory
34
  )
35
 
36
- # Load the fine-tuned model
37
- ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800", cache_dir=cache_dir)
38
 
39
  def formatting_func(job_description):
40
  text = f"### The job description: {job_description}\n ### The skills: "
@@ -66,4 +61,4 @@ inputs = gr.Textbox(lines=10, label="Job description:", placeholder="Enter or pa
66
  outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...")
67
 
68
  gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis",
69
- description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch() # Remove share=True
 
13
  if not huggingface_token:
14
  raise Exception("Hugging Face token not found. Please set it as an environment variable 'HUGGINGFACE_TOKEN'.")
15
 
 
 
 
16
  # Load the base model without quantization configuration
17
  base_model = AutoModelForCausalLM.from_pretrained(
18
  base_model_id,
19
  trust_remote_code=True,
20
+ token=huggingface_token # Use the token parameter
21
+ ).to("cuda") # Move model to CUDA
 
22
 
23
  # Load the tokenizer
24
  tokenizer = AutoTokenizer.from_pretrained(
25
  base_model_id,
26
  add_bos_token=True,
27
  trust_remote_code=True,
28
+ token=huggingface_token
 
29
  )
30
 
31
+ # Load the fine-tuned model and move to CUDA
32
+ ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800").to("cuda") # Move model to CUDA
33
 
34
  def formatting_func(job_description):
35
  text = f"### The job description: {job_description}\n ### The skills: "
 
61
  outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...")
62
 
63
  gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis",
64
+ description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch()