Spaces:
Sleeping
Sleeping
Add application file
Browse files- checkpoint-2800/README.md +219 -0
- checkpoint-2800/adapter_config.json +23 -0
- checkpoint-2800/adapter_model.safetensors +3 -0
- checkpoint-2800/optimizer.pt +3 -0
- checkpoint-2800/rng_state.pth +3 -0
- checkpoint-2800/scheduler.pt +3 -0
- checkpoint-2800/trainer_state.json +273 -0
- checkpoint-2800/training_args.bin +3 -0
- llama2-IPG_finetune_try.ipynb +272 -0
- requirements.txt +4 -0
- uploadmodel.py +19 -0
checkpoint-2800/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: meta-llama/Llama-2-13b-hf
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: bitsandbytes
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: bfloat16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2.dev0
|
checkpoint-2800/adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Llama-2-13b-hf",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 64,
|
12 |
+
"lora_dropout": 0.05,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 32,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"q_proj",
|
20 |
+
"k_proj"
|
21 |
+
],
|
22 |
+
"task_type": "CAUSAL_LM"
|
23 |
+
}
|
checkpoint-2800/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63b7e55789f3bbad419df2de076ed7229815c0b9b4fc1c23f12ab92316752e7b
|
3 |
+
size 104879176
|
checkpoint-2800/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34aa5b46cd7c031d3ed81730e3b1cd1a03a8dd43aec237435062df85244de16e
|
3 |
+
size 52724090
|
checkpoint-2800/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9398114854b219216b264811fd3bc69535fa03dc2c646a54e22e86021ef0e032
|
3 |
+
size 14244
|
checkpoint-2800/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bbae7002632658f22be934efc691b897c3c1fb5e80e85a9c5b3c230e7672a91
|
3 |
+
size 1064
|
checkpoint-2800/trainer_state.json
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 22.44488977955912,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 2800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.8,
|
13 |
+
"eval_loss": 1.9484879970550537,
|
14 |
+
"eval_runtime": 80.1777,
|
15 |
+
"eval_samples_per_second": 2.769,
|
16 |
+
"eval_steps_per_second": 0.349,
|
17 |
+
"step": 100
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 1.6,
|
21 |
+
"eval_loss": 1.9194128513336182,
|
22 |
+
"eval_runtime": 75.485,
|
23 |
+
"eval_samples_per_second": 2.941,
|
24 |
+
"eval_steps_per_second": 0.371,
|
25 |
+
"step": 200
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 2.4,
|
29 |
+
"eval_loss": 1.9068584442138672,
|
30 |
+
"eval_runtime": 75.624,
|
31 |
+
"eval_samples_per_second": 2.936,
|
32 |
+
"eval_steps_per_second": 0.37,
|
33 |
+
"step": 300
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 3.21,
|
37 |
+
"eval_loss": 1.8953101634979248,
|
38 |
+
"eval_runtime": 75.4707,
|
39 |
+
"eval_samples_per_second": 2.942,
|
40 |
+
"eval_steps_per_second": 0.371,
|
41 |
+
"step": 400
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 4.01,
|
45 |
+
"learning_rate": 2.08611481975968e-05,
|
46 |
+
"loss": 1.9094,
|
47 |
+
"step": 500
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 4.01,
|
51 |
+
"eval_loss": 1.8837881088256836,
|
52 |
+
"eval_runtime": 75.6492,
|
53 |
+
"eval_samples_per_second": 2.935,
|
54 |
+
"eval_steps_per_second": 0.37,
|
55 |
+
"step": 500
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 4.81,
|
59 |
+
"eval_loss": 1.8737961053848267,
|
60 |
+
"eval_runtime": 75.486,
|
61 |
+
"eval_samples_per_second": 2.941,
|
62 |
+
"eval_steps_per_second": 0.371,
|
63 |
+
"step": 600
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 5.61,
|
67 |
+
"eval_loss": 1.8641096353530884,
|
68 |
+
"eval_runtime": 75.4927,
|
69 |
+
"eval_samples_per_second": 2.941,
|
70 |
+
"eval_steps_per_second": 0.371,
|
71 |
+
"step": 700
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 6.41,
|
75 |
+
"eval_loss": 1.8550605773925781,
|
76 |
+
"eval_runtime": 75.4778,
|
77 |
+
"eval_samples_per_second": 2.941,
|
78 |
+
"eval_steps_per_second": 0.371,
|
79 |
+
"step": 800
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 7.21,
|
83 |
+
"eval_loss": 1.8458194732666016,
|
84 |
+
"eval_runtime": 75.4994,
|
85 |
+
"eval_samples_per_second": 2.94,
|
86 |
+
"eval_steps_per_second": 0.371,
|
87 |
+
"step": 900
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 8.02,
|
91 |
+
"learning_rate": 1.6688918558077437e-05,
|
92 |
+
"loss": 1.8138,
|
93 |
+
"step": 1000
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 8.02,
|
97 |
+
"eval_loss": 1.837294340133667,
|
98 |
+
"eval_runtime": 75.3775,
|
99 |
+
"eval_samples_per_second": 2.945,
|
100 |
+
"eval_steps_per_second": 0.371,
|
101 |
+
"step": 1000
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 8.82,
|
105 |
+
"eval_loss": 1.8297418355941772,
|
106 |
+
"eval_runtime": 75.4862,
|
107 |
+
"eval_samples_per_second": 2.941,
|
108 |
+
"eval_steps_per_second": 0.371,
|
109 |
+
"step": 1100
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 9.62,
|
113 |
+
"eval_loss": 1.8239439725875854,
|
114 |
+
"eval_runtime": 75.4899,
|
115 |
+
"eval_samples_per_second": 2.941,
|
116 |
+
"eval_steps_per_second": 0.371,
|
117 |
+
"step": 1200
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 10.42,
|
121 |
+
"eval_loss": 1.8179348707199097,
|
122 |
+
"eval_runtime": 75.4662,
|
123 |
+
"eval_samples_per_second": 2.942,
|
124 |
+
"eval_steps_per_second": 0.371,
|
125 |
+
"step": 1300
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 11.22,
|
129 |
+
"eval_loss": 1.8130933046340942,
|
130 |
+
"eval_runtime": 75.5064,
|
131 |
+
"eval_samples_per_second": 2.94,
|
132 |
+
"eval_steps_per_second": 0.371,
|
133 |
+
"step": 1400
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 12.02,
|
137 |
+
"learning_rate": 1.2516688918558078e-05,
|
138 |
+
"loss": 1.7439,
|
139 |
+
"step": 1500
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 12.02,
|
143 |
+
"eval_loss": 1.8075053691864014,
|
144 |
+
"eval_runtime": 75.671,
|
145 |
+
"eval_samples_per_second": 2.934,
|
146 |
+
"eval_steps_per_second": 0.37,
|
147 |
+
"step": 1500
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 12.83,
|
151 |
+
"eval_loss": 1.8044650554656982,
|
152 |
+
"eval_runtime": 75.6414,
|
153 |
+
"eval_samples_per_second": 2.935,
|
154 |
+
"eval_steps_per_second": 0.37,
|
155 |
+
"step": 1600
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 13.63,
|
159 |
+
"eval_loss": 1.8003138303756714,
|
160 |
+
"eval_runtime": 75.6422,
|
161 |
+
"eval_samples_per_second": 2.935,
|
162 |
+
"eval_steps_per_second": 0.37,
|
163 |
+
"step": 1700
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 14.43,
|
167 |
+
"eval_loss": 1.7982312440872192,
|
168 |
+
"eval_runtime": 75.6665,
|
169 |
+
"eval_samples_per_second": 2.934,
|
170 |
+
"eval_steps_per_second": 0.37,
|
171 |
+
"step": 1800
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 15.23,
|
175 |
+
"eval_loss": 1.7970277070999146,
|
176 |
+
"eval_runtime": 75.6383,
|
177 |
+
"eval_samples_per_second": 2.935,
|
178 |
+
"eval_steps_per_second": 0.37,
|
179 |
+
"step": 1900
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 16.03,
|
183 |
+
"learning_rate": 8.344459279038718e-06,
|
184 |
+
"loss": 1.7005,
|
185 |
+
"step": 2000
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 16.03,
|
189 |
+
"eval_loss": 1.7927231788635254,
|
190 |
+
"eval_runtime": 78.7098,
|
191 |
+
"eval_samples_per_second": 2.82,
|
192 |
+
"eval_steps_per_second": 0.356,
|
193 |
+
"step": 2000
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 16.83,
|
197 |
+
"eval_loss": 1.790854573249817,
|
198 |
+
"eval_runtime": 77.0191,
|
199 |
+
"eval_samples_per_second": 2.882,
|
200 |
+
"eval_steps_per_second": 0.364,
|
201 |
+
"step": 2100
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 17.64,
|
205 |
+
"eval_loss": 1.7891895771026611,
|
206 |
+
"eval_runtime": 76.0084,
|
207 |
+
"eval_samples_per_second": 2.921,
|
208 |
+
"eval_steps_per_second": 0.368,
|
209 |
+
"step": 2200
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 18.44,
|
213 |
+
"eval_loss": 1.7889128923416138,
|
214 |
+
"eval_runtime": 75.6093,
|
215 |
+
"eval_samples_per_second": 2.936,
|
216 |
+
"eval_steps_per_second": 0.37,
|
217 |
+
"step": 2300
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 19.24,
|
221 |
+
"eval_loss": 1.788590431213379,
|
222 |
+
"eval_runtime": 75.7303,
|
223 |
+
"eval_samples_per_second": 2.931,
|
224 |
+
"eval_steps_per_second": 0.37,
|
225 |
+
"step": 2400
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 20.04,
|
229 |
+
"learning_rate": 4.172229639519359e-06,
|
230 |
+
"loss": 1.6705,
|
231 |
+
"step": 2500
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 20.04,
|
235 |
+
"eval_loss": 1.7878992557525635,
|
236 |
+
"eval_runtime": 75.5956,
|
237 |
+
"eval_samples_per_second": 2.937,
|
238 |
+
"eval_steps_per_second": 0.37,
|
239 |
+
"step": 2500
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 20.84,
|
243 |
+
"eval_loss": 1.7869019508361816,
|
244 |
+
"eval_runtime": 75.569,
|
245 |
+
"eval_samples_per_second": 2.938,
|
246 |
+
"eval_steps_per_second": 0.371,
|
247 |
+
"step": 2600
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 21.64,
|
251 |
+
"eval_loss": 1.7858072519302368,
|
252 |
+
"eval_runtime": 75.7601,
|
253 |
+
"eval_samples_per_second": 2.93,
|
254 |
+
"eval_steps_per_second": 0.37,
|
255 |
+
"step": 2700
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 22.44,
|
259 |
+
"eval_loss": 1.7860134840011597,
|
260 |
+
"eval_runtime": 75.7457,
|
261 |
+
"eval_samples_per_second": 2.931,
|
262 |
+
"eval_steps_per_second": 0.37,
|
263 |
+
"step": 2800
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"logging_steps": 500,
|
267 |
+
"max_steps": 3000,
|
268 |
+
"num_train_epochs": 25,
|
269 |
+
"save_steps": 100,
|
270 |
+
"total_flos": 3.543009935795159e+18,
|
271 |
+
"trial_name": null,
|
272 |
+
"trial_params": null
|
273 |
+
}
|
checkpoint-2800/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43ea1115ffda2a3c1618b3332df716a35be23a2f0189618eee433eae410c93e2
|
3 |
+
size 4536
|
llama2-IPG_finetune_try.ipynb
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 9,
|
6 |
+
"metadata": {
|
7 |
+
"ExecuteTime": {
|
8 |
+
"end_time": "2023-11-25T14:59:03.066893917Z",
|
9 |
+
"start_time": "2023-11-25T14:59:02.924638197Z"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"outputs": [
|
13 |
+
{
|
14 |
+
"name": "stderr",
|
15 |
+
"output_type": "stream",
|
16 |
+
"text": [
|
17 |
+
"/home/z/miniconda3/envs/llama/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.\n",
|
18 |
+
" warnings.warn(\n"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"data": {
|
23 |
+
"application/vnd.jupyter.widget-view+json": {
|
24 |
+
"model_id": "6745f1964cda44068721c6c8b5f91eee",
|
25 |
+
"version_major": 2,
|
26 |
+
"version_minor": 0
|
27 |
+
},
|
28 |
+
"text/plain": [
|
29 |
+
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"metadata": {},
|
33 |
+
"output_type": "display_data"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"name": "stderr",
|
37 |
+
"output_type": "stream",
|
38 |
+
"text": [
|
39 |
+
"/home/z/miniconda3/envs/llama/lib/python3.10/site-packages/transformers/utils/hub.py:374: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.\n",
|
40 |
+
" warnings.warn(\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"import torch\n",
|
46 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
|
47 |
+
"\n",
|
48 |
+
"# Define the base model ID\n",
|
49 |
+
"base_model_id = \"meta-llama/Llama-2-13b-hf\"\n",
|
50 |
+
"\n",
|
51 |
+
"# Create a BitsAndBytesConfig object with the corrected settings\n",
|
52 |
+
"quantization_config = BitsAndBytesConfig(\n",
|
53 |
+
" load_in_4bit=True,\n",
|
54 |
+
" bnb_4bit_use_double_quant=True,\n",
|
55 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
56 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
57 |
+
" load_in_8bit_fp32_cpu_offload=True # Set as suggested in the error\n",
|
58 |
+
")\n",
|
59 |
+
"\n",
|
60 |
+
"# Load the base model with the updated quantization configuration\n",
|
61 |
+
"# Adjust 'device_map' based on your system's GPU configuration\n",
|
62 |
+
"base_model = AutoModelForCausalLM.from_pretrained(\n",
|
63 |
+
" base_model_id, \n",
|
64 |
+
" quantization_config=quantization_config,\n",
|
65 |
+
" trust_remote_code=True,\n",
|
66 |
+
" use_auth_token=True\n",
|
67 |
+
")\n",
|
68 |
+
"\n",
|
69 |
+
"# Load the tokenizer\n",
|
70 |
+
"tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)\n"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"metadata": {
|
76 |
+
"id": "_BxOhAiqyRgp"
|
77 |
+
},
|
78 |
+
"source": [
|
79 |
+
"Now load the QLoRA adapter from the appropriate checkpoint directory, i.e. the best performing model checkpoint:"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 10,
|
85 |
+
"metadata": {
|
86 |
+
"ExecuteTime": {
|
87 |
+
"end_time": "2023-11-25T14:59:12.830783738Z",
|
88 |
+
"start_time": "2023-11-25T14:59:12.826615170Z"
|
89 |
+
},
|
90 |
+
"id": "GwsiqhWuyRgp"
|
91 |
+
},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"from peft import PeftModel\n",
|
95 |
+
"\n",
|
96 |
+
"ft_model = PeftModel.from_pretrained(base_model, \"checkpoint-2800\")"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 11,
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"from datasets import load_dataset\n",
|
106 |
+
"\n",
|
107 |
+
" \n",
|
108 |
+
"eval_dataset = load_dataset('json', data_files='/home/z/Music/LLAMA/llama/IPG/datasets/new_test_data.json', split='train')\n",
|
109 |
+
"\n",
|
110 |
+
"\n",
|
111 |
+
"def formatting_func(example):\n",
|
112 |
+
" text = f\"### The job description: {example['text']}\\n ### The skills: \"\n",
|
113 |
+
" return text\n",
|
114 |
+
"\n"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 12,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
"def run_finetune_model(model_id):\n",
|
126 |
+
"\n",
|
127 |
+
" example = eval_dataset.filter(lambda x: x['id'] == model_id)[0]\n",
|
128 |
+
" formatted_text = formatting_func(example)\n",
|
129 |
+
" \n",
|
130 |
+
" #print(formatted_text)\n",
|
131 |
+
" model_input = tokenizer(formatted_text, return_tensors=\"pt\").to(\"cuda\")\n",
|
132 |
+
"\n",
|
133 |
+
"\n",
|
134 |
+
" ft_model.eval()\n",
|
135 |
+
" with torch.no_grad():\n",
|
136 |
+
" output_tokens = ft_model.generate(**model_input, max_new_tokens=200)[0]\n",
|
137 |
+
" generated_text = tokenizer.decode(output_tokens, skip_special_tokens=True)\n",
|
138 |
+
" \n",
|
139 |
+
" print(generated_text)\n",
|
140 |
+
"\n",
|
141 |
+
"\n"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 13,
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [
|
149 |
+
{
|
150 |
+
"name": "stdout",
|
151 |
+
"output_type": "stream",
|
152 |
+
"text": [
|
153 |
+
"### The job description: German BD Manager\n",
|
154 |
+
"Job Description:\n",
|
155 |
+
"1、Represent the company to develop new partners for energy storage system;\n",
|
156 |
+
"2、Maintain good relationship and help partners to develop/grow the business;\n",
|
157 |
+
"3、Formulate a strategy and target for the market exploration so as to achieve good performance;\n",
|
158 |
+
"4、Pay attention and collect information for the latest development/tendency in the industry as well as getting feedback/insight to R&D;\n",
|
159 |
+
"5、Advice and assist the company to build a strong local team including but not limited to after sale service, technical support, sales and marketing.\n",
|
160 |
+
" \n",
|
161 |
+
"Job Requirements:\n",
|
162 |
+
"1、Fluent in English and German;\n",
|
163 |
+
"2、5+ years of experience in the industry of Energy Storage System, a good education background will be preferential;\n",
|
164 |
+
"3、Strong execution and result-oriented, attach importance to details and critical thinking as well as desire to progress/evolve;\n",
|
165 |
+
"4、Open-minded and teamwork, great skills in communication.\n",
|
166 |
+
" ### The skills: ['programming', 'simulation', 'communication', 'excel', 'word', 'powerpoint', 'marketing', 'c++', 'matlab', 'html', 'data analysis', 'powerpoint', 'communication', 'project management', 'excel', 'microsoft office', 'tableau', 'powerpoint', 'word', 'microsoft office', 'communication', 'python', 'excel', 'microsoft office', 'c++', 'python', 'data analysis', 'python', 'html', 'data analysis', 'communication', 'microsoft office', 'java', 'powerpoint']\n",
|
167 |
+
" ### The qualifications: \n",
|
168 |
+
"\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
+
"\n",
|
172 |
+
"\n",
|
173 |
+
"\n",
|
174 |
+
"\n",
|
175 |
+
"\n",
|
176 |
+
"\n",
|
177 |
+
"\n",
|
178 |
+
"\n",
|
179 |
+
"\n",
|
180 |
+
"\n",
|
181 |
+
"\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"\n",
|
185 |
+
"\n",
|
186 |
+
"\n",
|
187 |
+
"\n",
|
188 |
+
"\n",
|
189 |
+
"\n",
|
190 |
+
"\n",
|
191 |
+
"\n",
|
192 |
+
"\n",
|
193 |
+
"\n",
|
194 |
+
"\n",
|
195 |
+
"\n",
|
196 |
+
"\n",
|
197 |
+
"\n",
|
198 |
+
"\n",
|
199 |
+
"\n",
|
200 |
+
"\n",
|
201 |
+
"\n",
|
202 |
+
"\n",
|
203 |
+
"\n",
|
204 |
+
"\n",
|
205 |
+
"\n",
|
206 |
+
"\n",
|
207 |
+
"\n",
|
208 |
+
"\n",
|
209 |
+
"\n",
|
210 |
+
"\n",
|
211 |
+
"\n",
|
212 |
+
"\n",
|
213 |
+
"\n",
|
214 |
+
"\n",
|
215 |
+
"\n",
|
216 |
+
"\n",
|
217 |
+
"\n",
|
218 |
+
"\n",
|
219 |
+
"\n",
|
220 |
+
"\n",
|
221 |
+
"\n",
|
222 |
+
"\n",
|
223 |
+
"\n",
|
224 |
+
"\n",
|
225 |
+
"\n",
|
226 |
+
"\n",
|
227 |
+
"\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
"\n",
|
231 |
+
"\n",
|
232 |
+
"\n",
|
233 |
+
"\n",
|
234 |
+
"\n",
|
235 |
+
"\n",
|
236 |
+
"\n"
|
237 |
+
]
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"source": [
|
241 |
+
"run_finetune_model(\"19010\")\n"
|
242 |
+
]
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"metadata": {
|
246 |
+
"accelerator": "GPU",
|
247 |
+
"colab": {
|
248 |
+
"gpuType": "T4",
|
249 |
+
"provenance": []
|
250 |
+
},
|
251 |
+
"gpuClass": "standard",
|
252 |
+
"kernelspec": {
|
253 |
+
"display_name": "Python 3 (ipykernel)",
|
254 |
+
"language": "python",
|
255 |
+
"name": "python3"
|
256 |
+
},
|
257 |
+
"language_info": {
|
258 |
+
"codemirror_mode": {
|
259 |
+
"name": "ipython",
|
260 |
+
"version": 3
|
261 |
+
},
|
262 |
+
"file_extension": ".py",
|
263 |
+
"mimetype": "text/x-python",
|
264 |
+
"name": "python",
|
265 |
+
"nbconvert_exporter": "python",
|
266 |
+
"pygments_lexer": "ipython3",
|
267 |
+
"version": "3.10.13"
|
268 |
+
}
|
269 |
+
},
|
270 |
+
"nbformat": 4,
|
271 |
+
"nbformat_minor": 4
|
272 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
peft
|
uploadmodel.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, HfFolder
|
2 |
+
|
3 |
+
# 设置您的Hugging Face用户名和模型名称
|
4 |
+
|
5 |
+
repo_name = f"wangzerui/Job-Skiils-Analysis"
|
6 |
+
|
7 |
+
# 获取访问令牌
|
8 |
+
token = HfFolder.get_token()
|
9 |
+
|
10 |
+
# 初始化HfApi
|
11 |
+
api = HfApi()
|
12 |
+
|
13 |
+
# 上传文件到模型仓库
|
14 |
+
api.upload_folder(
|
15 |
+
folder_path="checkpoint-2800", # 您的模型文件夹路径
|
16 |
+
repo_id=repo_name,
|
17 |
+
token=token,
|
18 |
+
path_in_repo="", # 将模型文件上传到仓库的根目录
|
19 |
+
)
|