Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
+
import gradio as gr
|
4 |
+
from peft import PeftModel
|
5 |
+
|
6 |
+
# Define the base model ID
|
7 |
+
base_model_id = "meta-llama/Llama-2-13b-hf"
|
8 |
+
|
9 |
+
# Create a BitsAndBytesConfig object with the corrected settings
|
10 |
+
quantization_config = BitsAndBytesConfig(
|
11 |
+
load_in_4bit=True,
|
12 |
+
bnb_4bit_use_double_quant=True,
|
13 |
+
bnb_4bit_quant_type="nf4",
|
14 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
15 |
+
load_in_8bit_fp32_cpu_offload=True # Set as suggested in the error
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the base model with the updated quantization configuration
|
19 |
+
# Adjust 'device_map' based on your system's GPU configuration
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
base_model_id,
|
22 |
+
quantization_config=quantization_config,
|
23 |
+
trust_remote_code=True,
|
24 |
+
use_auth_token=True
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load the tokenizer
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)
|
29 |
+
|
30 |
+
# Load the fine-tuned model
|
31 |
+
ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800")
|
32 |
+
|
33 |
+
def formatting_func(job_description):
|
34 |
+
text = f"### The job description: {job_description}\n ### The skills: "
|
35 |
+
return text
|
36 |
+
|
37 |
+
def generate_skills(job_description):
|
38 |
+
formatted_text = formatting_func(job_description)
|
39 |
+
model_input = tokenizer(formatted_text, return_tensors="pt").to("cuda")
|
40 |
+
|
41 |
+
ft_model.eval()
|
42 |
+
with torch.no_grad():
|
43 |
+
output_tokens = ft_model.generate(**model_input, max_new_tokens=200)[0]
|
44 |
+
generated_text = tokenizer.decode(output_tokens, skip_special_tokens=True)
|
45 |
+
|
46 |
+
# Extract the text after "### The skills:" and before "### The qualifications:"
|
47 |
+
skills_start_index = generated_text.find("### The skills:") + len("### The skills:")
|
48 |
+
qualifications_start_index = generated_text.find("### The qualifications:")
|
49 |
+
|
50 |
+
if qualifications_start_index != -1:
|
51 |
+
skills_text = generated_text[skills_start_index:qualifications_start_index].strip()
|
52 |
+
else:
|
53 |
+
skills_text = generated_text[skills_start_index:].strip()
|
54 |
+
|
55 |
+
return skills_text
|
56 |
+
|
57 |
+
# Define the Gradio interface
|
58 |
+
inputs = gr.Textbox(lines=10, label="Job description:", placeholder="Enter or paste the job description here...")
|
59 |
+
outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...")
|
60 |
+
|
61 |
+
gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis",
|
62 |
+
description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch()
|