Spaces:
Build error
Build error
| import os | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| from peft import PeftModel | |
| import spaces | |
| # Define the base model ID | |
| base_model_id = "meta-llama/Llama-2-13b-hf" | |
| # Ensure you have the Hugging Face token set as an environment variable | |
| huggingface_token = os.getenv('HUGGINGFACE_TOKEN') | |
| if not huggingface_token: | |
| raise Exception("Hugging Face token not found. Please set it as an environment variable 'HUGGINGFACE_TOKEN'.") | |
| # Load the base model without quantization configuration | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| trust_remote_code=True, | |
| use_auth_token=huggingface_token # Use the correct parameter | |
| ).to("cuda") # Move model to CUDA | |
| # Load the tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| base_model_id, | |
| add_bos_token=True, | |
| trust_remote_code=True, | |
| use_auth_token=huggingface_token | |
| ) | |
| # Load the fine-tuned model and move to CUDA | |
| ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800").to("cuda") # Move model to CUDA | |
| def formatting_func(job_description): | |
| text = f"### The job description: {job_description}\n ### The skills: " | |
| return text | |
| # Decorate the function to ensure it uses GPU | |
| def generate_skills(job_description): | |
| formatted_text = formatting_func(job_description) | |
| model_input = tokenizer(formatted_text, return_tensors="pt").to("cuda") # Ensure input is on CUDA | |
| ft_model.eval() | |
| with torch.no_grad(): | |
| output_tokens = ft_model.generate(**model_input, max_new_tokens=200)[0] | |
| generated_text = tokenizer.decode(output_tokens, skip_special_tokens=True) | |
| # Extract the text after "### The skills:" and before "### The qualifications:" | |
| skills_start_index = generated_text.find("### The skills:") + len("### The skills:") | |
| qualifications_start_index = generated_text.find("### The qualifications:") | |
| if qualifications_start_index != -1: | |
| skills_text = generated_text[skills_start_index:qualifications_start_index].strip() | |
| else: | |
| skills_text = generated_text[skills_start_index:].strip() | |
| # Clear CUDA memory | |
| torch.cuda.empty_cache() | |
| return skills_text | |
| # Define the Gradio interface | |
| inputs = gr.Textbox(lines=10, label="Job description:", placeholder="Enter or paste the job description here...") | |
| outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...") | |
| gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis", | |
| description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch(share=True) | |